RESUMEN
Secretory proteins are exported from the endoplasmic reticulum in COPII vesicles. SNARE proteins-core machinery for membrane fusion-are incorporated into COPII vesicles by direct interaction with Sec24. Here we report a novel mechanism for sorting of the ER-Golgi Q-SNAREs into COPII vesicles. Different mammalian Sec24 isoforms recruit either the R-SNARE Sec22b or the Q-SNAREs Syntaxin5, GS27, and Bet1. Syntaxin5 is the only Q-SNARE that directly interacts with Sec24C, requiring its "open" conformation. Mutation within the IxM cargo-binding site of Sec24C led to a drastic reduction in sorting of all three Q-SNAREs into COPII vesicles, implying their ER export as a preassembled complex. Analysis of immunoisolated COPII vesicles and intracellular localization of Sec24 isoforms indicate that all ER-Golgi SNAREs are present on the same vesicle. Combined with existing data, our findings yield a general concept of how Sec24 isoforms can recruit fusogenic SNARE subunits to keep them functionally apart and thus prime mammalian COPII vesicles for homotypic fusion.
Asunto(s)
Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Q-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMEN
Newly synthesized membrane and secreted proteins undergo a series of posttranslational modifications in the Golgi apparatus, including attachment of carbohydrate moieties. The final structure of so-formed glycans is determined by the order of execution of the different glycosylation steps, which seems intimately related to the spatial distribution of glycosyltransferases and glycosyl hydrolases within the Golgi apparatus. How cells achieve an accurate localization of these enzymes is not completely understood but might involve dynamic processes such as coatomer-coated (COPI) vesicle-mediated trafficking. In yeast, this transport is likely to be regulated by vacuolar protein sorting 74 (Vps74p), a peripheral Golgi protein able to interact with COPI coat as well as with a binding motif present in the cytosolic tails of some mannosyltransferases. Recently, Golgi phosphoprotein 3 (GOLPH3), the mammalian homolog of Vps74, has been shown to control the Golgi localization of core 2 N-acetylglucosamine-transferase 1. Here, we highlight a role of GOLPH3 in the spatial localization of α-2,6-sialyltransferase 1. We show, for the first time, that GOLPH3 supports incorporation of both core 2 N-acetylglucosamine-transferase 1 and α-2,6-sialyltransferase 1 into COPI vesicles. Depletion of GOLPH3 altered the subcellular localization of these enzymes. In contrast, galactosyltransferase, an enzyme that does not interact with GOLPH3, was neither incorporated into COPI vesicles nor was dependent on GOLPH3 for proper localization.
Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/fisiología , Animales , Antígenos CD/metabolismo , Células CHO , Proteínas Portadoras/metabolismo , Proteína Coatómero/metabolismo , Cricetinae , Cricetulus , Citosol/metabolismo , Galactosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Microscopía Fluorescente , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Sialiltransferasas/metabolismoRESUMEN
Newly synthesized proteins and lipids are transported in vesicular carriers along the secretory pathway. Arfs (ADP-ribosylation factors), a family of highly conserved GTPases within the Ras superfamily, control recruitment of molecular coats to membranes, the initial step of coated vesicle biogenesis. Arf1 and coatomer constitute the minimal cytosolic machinery leading to COPI vesicle formation from Golgi membranes. Although some functional redundancies have been suggested, other Arf isoforms have been poorly analyzed in this context. In this study, we found that Arf1, Arf4, and Arf5, but not Arf3 and Arf6, associate with COPI vesicles generated in vitro from Golgi membranes and purified cytosol. Using recombinant myristoylated proteins, we show that Arf1, Arf4, and Arf5 each support COPI vesicle formation individually. Unexpectedly, we found that Arf3 could also mediate vesicle biogenesis. However, Arf3 was excluded from the vesicle fraction in the presence of the other isoforms, highlighting a functional competition between the different Arf members.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Aparato de Golgi/enzimología , Membranas Intracelulares/enzimología , Factores de Ribosilacion-ADP/genética , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Aparato de Golgi/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lipoilación/fisiología , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
The formation of coat protein complex I (COPI)-coated vesicles is regulated by the small guanosine triphosphatase (GTPase) adenosine diphosphate ribosylation factor 1 (Arf1), which in its GTP-bound form recruits coatomer to the Golgi membrane. Arf GTPase-activating protein (GAP) catalyzed GTP hydrolysis in Arf1 triggers uncoating and is required for uptake of cargo molecules into vesicles. Three mammalian ArfGAPs are involved in COPI vesicle trafficking; however, their individual functions remain obscure. ArfGAP1 binds to membranes depending on their curvature. In this study, we show that ArfGAP2 and ArfGAP3 do not bind directly to membranes but are recruited via interactions with coatomer. In the presence of coatomer, ArfGAP2 and ArfGAP3 activities are comparable with or even higher than ArfGAP1 activity. Although previously speculated, our results now demonstrate a function for coatomer in ArfGAP-catalyzed GTP hydrolysis by Arf1. We suggest that ArfGAP2 and ArfGAP3 are coat protein-dependent ArfGAPs, whereas ArfGAP1 has a more general function.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteína Coat de Complejo I/metabolismo , Vesículas Cubiertas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Animales , Línea Celular , Proteína Coat de Complejo I/genética , Vesículas Cubiertas/genética , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Transporte de Proteínas/fisiología , RatasRESUMEN
Coatomer, the coat protein of coat protein complex (COP)I-vesicles, is a soluble protein complex made up of seven subunits, alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP. Higher eukaryotes have two paralogous versions of the gamma- and zeta- subunits, termed gamma1- and gamma2-COP and zeta1- and zeta2-COP. Different combinations of these subunits are known to exist within coatomer complexes, and gamma1/zeta1-, gamma1/zeta2-, and gamma2/zeta1-COP represent the major coatomer populations in mammals. The role of COPI vesicles in the early secretory pathway is the subject of considerable debate. To help to resolve this discussion, we used quantitative immunoelectron microscopy and found that significant localization differences for COPI-isoforms do exist, with a preference for gamma1zeta1- and gamma1zeta2-coatomer in the early Golgi apparatus and gamma2zeta1-coatomer in the late Golgi apparatus. These differences suggest distinct functions for coatomer isoforms in a manner similar to clathrin/adaptor vesicles, where different adaptor proteins serve particular transport routes.