Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(9): 1695-1707, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103556

RESUMEN

Although the molecular composition and architecture of synapses have been widely explored, much less is known about what genetic programs directly activate synaptic gene expression and how they are modulated. Here, using Caenorhabditis elegans dopaminergic neurons, we reveal that EGL-43/MECOM and FOS-1/FOS control an activity-dependent synaptogenesis program. Loss of either factor severely reduces presynaptic protein expression. Both factors bind directly to promoters of synaptic genes and act together with CUT homeobox transcription factors to activate transcription. egl-43 and fos-1 mutually promote each other's expression, and increasing the binding affinity of FOS-1 to the egl-43 locus results in increased presynaptic protein expression and synaptic function. EGL-43 regulates the expression of multiple transcription factors, including activity-regulated factors and developmental factors that define multiple aspects of dopaminergic identity. Together, we describe a robust genetic program underlying activity-regulated synapse formation during development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuronas Dopaminérgicas , Neurogénesis , Sinapsis , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinapsis/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neurogénesis/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación del Desarrollo de la Expresión Génica
2.
Elife ; 102021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33427646

RESUMEN

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.


Asunto(s)
Drosophila melanogaster/metabolismo , Neuritas/metabolismo , Nervio Olfatorio/metabolismo , Transcriptoma , Animales , Análisis de la Célula Individual , Factores de Tiempo
3.
Cell Rep ; 32(2): 107901, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668239

RESUMEN

Protein synthesis inhibitors (e.g., cycloheximide) block mitotic entry, suggesting that cell cycle progression requires protein synthesis until right before mitosis. However, cycloheximide is also known to activate p38 mitogen-activated protein kinase (MAPK), which can delay mitotic entry through a G2/M checkpoint. Here, we ask whether checkpoint activation or a requirement for protein synthesis is responsible for the cycloheximide effect. We find that p38 inhibitors prevent cycloheximide-treated cells from arresting in G2 phase and that G2 duration is normal in approximately half of these cells. The Wee1 inhibitor MK-1775 and Wee1/Myt1 inhibitor PD0166285 also prevent cycloheximide from blocking mitotic entry, raising the possibility that Wee1 and/or Myt1 mediate the cycloheximide-induced G2 arrest. Thus, protein synthesis during G2 phase is not required for mitotic entry, at least when the p38 checkpoint pathway is abrogated. However, M phase progression is delayed in cycloheximide-plus-kinase-inhibitor-treated cells, emphasizing the different requirements of protein synthesis for timely entry and completion of mitosis.


Asunto(s)
Puntos de Control de la Fase G2 del Ciclo Celular , Biosíntesis de Proteínas , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cicloheximida/farmacología , Proteínas de Unión al ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Histonas/metabolismo , Humanos , Mitosis/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...