RESUMEN
We report state of the art electronic structure calculations RICC2 and XMCQDPT of BODIPY nonorthogonal dimers to understand the photophysical processes from the intramolecular singlet fission (iSF) perspective. We have calculated singlet, triplet and quintet states at the XMCQDPT(8,8)/cc-pVDZ level of theory and diabatic singlet states at the XMCQDPT(4,4)/cc-pVDZ level of theory. In all the systems studied, charge transfer states (1(CA) and 1(AC)) couple strongly with locally excited (1(S1S0)) and multiexcitonic (1(T1T1)) states. The rates of formation of the multiexcitonic state from the locally excited state are very low on account of large activation energy (E(1(T1T1)) - E(1(S1S0))). A relaxed scan along the torsional angle revealed contrasting results for axial and orthogonal conformers. We proposed a probable mechanism for contrasting photophysical properties of dimers B[3,3] and B[2,8]. We also found that substitution of CN, NH2 and BH2 at meso, ß and α positions reduces the energy gap (ΔSF = 2E(T1) - E(S1)) significantly, making iSF a competing process in triplet state generation. Intrigued by the success of the CN group at the meso position in reducing the energy gap, we also studied the azaBODIPY monomer and its derivatives using the same methodology. The iSF is slightly endoergic with ΔSF â¼ 0.2 eV in these systems and iSF may play an important role in their photophysical responses.
RESUMEN
Aphis craccivora Koch and Planococcus lilacinus Cockerell are phloem feeders and act as vectors for transmitting plant viruses to agricultural and horticultural crops thereby damaging them. The persistent and widespread use of synthetic, wide-spectrum pesticides has resulted in resistance development that is detrimental to the environment, human health, and natural enemies of pests. The present investigation uses various extraction mediums to examine the insecticidal efficacy of essential oils (EOs) isolated from Murraya koenigii (L.) leaves. Increase in yield was observed in the EO extracted using NADES-AHD [0.16% (obtained with hydro-distillation)] to 0.30% [obtained with N-1 (glycerol:lactic acid)]. EO obtained with water was found more effective against A. craccivora (LD50 = 0.89 µL/insect) and followed by N-1 (glycerol:lactic acid), and N-3 (choline chloride:citric acid) (LD50 = 1.29-1.38 µL/insect). Similarly, EO isolated by water and N-4 (choline chloride:oxalic acid) was effective against P. lilacinus (LD50 = 2.63-3.06 µL/insect). Additionally, the EO prepared by water substantially reduced glutathione S-transferase (GST) and acetylcholinesterase (AChE) in target pests, suggesting that these enzymes may be the EOs' site of action. NADES-AHD has enhanced the EO yield as compared to the conventional method. The EO obtained with water showed promising toxicity against target pests and target site of action. Therefore, based on field and greenhouse bio-efficacy experiments, EOs/biopesticides/botanicals can be proposed for controlling the spread of mealy bugs and aphids.
RESUMEN
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
RESUMEN
Doping enhances the optical properties of high-band gap zinc oxide nanoparticles (ZnO NPs), essential for their photocatalytic activity. We used the combustion approach to synthesize cobalt-doped ZnO heterostructure (CDZO). By creating a mid-edge level, it was possible to tune the indirect band gap of the ZnO NPs from 3.1â eV to 1.8â eV. The red shift and reduction in the intensity of the photoluminescence (PL) spectra resulted from hindrances in electron-hole recombination and sp-d exchange interactions. These improved optical properties expanded the absorption of solar light and enhanced charge transfer. The field emission scanning electron microscopy (FESEM) image and elemental mapping analysis confirmed the CDZO's porous nature and the dopant's uniform distribution. The porosity, nanoscale size (25-55â nm), and crystallinity of the CDZO were further verified by high-resolution transmission electron microscopy (HRTEM) and selected area electron image analysis. The photocatalytic activity of the CDZO exhibited much greater efficiency (k=0.131â min-1) than that of ZnO NPs (k=0.017â min-1). Therefore, doped heterostructures show great promise for industrial-scale environmental remediation applications.
RESUMEN
PURPOSE: In a patient with elevated thyroid stimulating hormone (TSH, >50 µIU/ml) with sellar mass, it is crucial to differentiate isolated pituitary hyperplasia (IPH) from primary hypothyroidism coexisting with nonfunctioning pituitary adenoma (PHCNFPA) pre-operatively to avoid unwarranted surgery in the former condition. Here, we describe patients having pituitary mass/enlargement with markedly elevated TSH (>50 µIU/ml) and attempt to find the differentiating features between IPH and PHCNFPA. METHODS: This is a retrospective study conducted at a tertiary care center. Case records of patients presenting between January 2020 and December 2022 with elevated TSH (>50 µIU/ml) for whom magnetic resonance imaging (MRI) of the sella was available were reviewed. Demographic details, symptomatology, clinical examination findings, thyroid function tests, data on pituitary hormonal excess and deficiencies, MRI findings, and details regarding levothyroxine supplementation were noted. Based on the final diagnosis, the patients were categorized into two groups: PHCNFPA and IPH. RESULTS: Five and 11 patients were diagnosed with PHCNFPA and IPH, respectively. The median (IQR) age at presentation of patients with PHCNFPA was significantly higher than that of IPH patients [37 (28-60.5) vs. 21 (10-21.5) years, p: 0.002]. A longer duration of hypothyroid symptoms was noted in the IPH group whereas visual field defects and corticotropin deficiency were more frequent and the pituitary lesion size was greater in PHCNFPA. Thyroid function tests were not different between the two groups. The pituitary enlargement in IPH was initially an increase in pituitary height that progressed to symmetrical nipple-, dome- or tent-shaped enlargement. Besides this characteristic enlargement pattern, isointense appearance on T1-weighted and T2-weighted images, homogeneous contrast enhancement, and prompt regression of pituitary lesion with levothyroxine replacement were characteristic of IPH whereas heterogeneous enhancement, cystic/hemorrhagic change, and ≥Knosp III invasion were characteristic of PHCNFPA. Peripheral rim enhancement and Knosp I-II parasellar extension were not uncommon in patients with IPH and did not distinguish it from PHCNFPA. CONCLUSIONS: The present study reports the radiological evolution of IPH and a unique series of PHCNFPA along with the distinguishing characteristics between them.
Asunto(s)
Adenoma , Hiperplasia , Hipotiroidismo , Imagen por Resonancia Magnética , Hipófisis , Neoplasias Hipofisarias , Humanos , Femenino , Persona de Mediana Edad , Masculino , Adulto , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Neoplasias Hipofisarias/complicaciones , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/diagnóstico por imagen , Estudios Retrospectivos , Hiperplasia/patología , Adenoma/complicaciones , Adenoma/patología , Adenoma/diagnóstico por imagen , Diagnóstico Diferencial , Hipófisis/patología , Hipófisis/diagnóstico por imagen , Tirotropina/sangreRESUMEN
Pigeonpea (Cajanus cajan) is one of the important grain legume crops cultivated in the semi-arid tropics, playing a crucial role in the economic well-being of subsistence farmers. India is the major producer of pigeonpea, accounting for over 75% of the world's production. Sterility mosaic disease (SMD), caused by Pigeonpea sterility mosaic virus (PPSMV) and transmitted by the eriophyid mite (Aceria cajani), is a major constraint to pigeonpea cultivation in the Indian subcontinent, leading to potential yield losses of up to 100%. The recent characterization of another Emaravirus associated with SMD has further complicated the etiology of this challenging viral disease. This review focuses on critical areas, including the current status of the disease, transmission and host-range, rapid phenotyping techniques, as well as available disease management strategies. The review concludes with insights into the future prospects, offering an overview and direction for further research and management strategies.
RESUMEN
An electrocardiogram of an uncommon congenital heart disease is presented to highlight the unique findings in diagnosis with its clinical implications and predictive value.
Asunto(s)
Electrocardiografía , Humanos , Electrocardiografía/métodos , Cardiopatías Congénitas/diagnóstico , Diagnóstico Diferencial , Masculino , FemeninoRESUMEN
Aging-related muscle atrophy/sarcopenia is the most common type of muscle impairment that affects the quality of life. In the current study, we examined the effect of a functional food mixture of amla, turmeric, black pepper, cinnamon, and ginger on D-galactose-induced muscle alterations in rats. Wistar rats were randomly divided into three groups: Control (C), D-galactose (G), and D-galactose + functional food mixture intervention (G + I). Rats in group-G and -G + I were injected with D-galactose (300 mg/kg/day) for 90 days. After 3 months of the experimental period, the rats were sacrificed to collect gastrocnemius muscle. Group-G rats showed elevated levels of inflammatory cytokines (TNFα and NF-kB), atrogenes (atrogin-1 and MuRF1), decreased insulin/IGF1 signaling (decreased AKT phosphorylation), altered mitochondrial dynamics (increased fission and decreased fusion proteins), increased apoptotic mediators (Bax/Bcl-2, and caspase-3), and decreased muscle cell cross-sectional area when compared with group-C (p < 0.05). Interestingly, supplementation with the functional food mixture prevented galactose-induced alterations in the muscle. The observed anti-inflammatory, insulin-sensitizing, mitochondria-protective, and antiapoptotic effects of the functional food could be the underlying mechanisms in displaying positive effects against galactose-induced muscle atrophy and, hence, may be useful for the prevention of age-related muscle disorders.
RESUMEN
The influence of boundary layer flow of heat transfer analysis on hybrid nanofluid across an extended cylinder is the main focus of the current research. In addition, the impressions of magnetohydrodynamic, porous medium and thermal radiation are part of this investigation. Arrogate similarity variables are employed to transform the governing modelled partial differential equations into a couple of highly nonlinear ordinary differential equations. A numerical approach based on the BVP Midrich scheme in MAPLE solver is employed for solution of the set of resulting ordinary differential equations and obtained results are compared with existing literature. The effect of active important physical parameters like Magnetic Field, Porosity parameter, Eckert number, Prandtl number and thermal radiation parameters on dimensionless velocity and energy fields are employed via graphs and tables. The velocity profile decreased by about 65% when the magnetic field parameter values increases from 0.5 to 1.5. On the other hand increased by 70% on energy profile. The energy profile enhanced by about 62% when the Radiation parameter values increases from 1.0 < Rd < 3.0. The current model may be applicable in real life practical implications of employing Engine oil-SWCNTs-MWCNTs-TiO2 nanofluids on cylinders encompass enhanced heat transfer efficiency, and extended component lifespan, energy savings, and environmental benefits. This kind of theoretical analysis may be used in daily life applications, such as engineering and automobile industries.
RESUMEN
BACKGROUND: Pulmonary embolism (PE) is a well-recognised complication of coronavirus disease 2019 (COVID-19) infection, and chronic thromboembolic pulmonary disease with and without pulmonary hypertension (CTEPD/CTEPH) are potential life-limiting consequences. At present the burden of CTEPD/CTEPH is unclear and optimal and cost-effective screening strategies yet to be established. METHODS: We evaluated the CTEPD/CTEPH referral rate to the UK national multidisciplinary team (MDT) during the 2017-2022 period to establish the national incidence of CTEPD/CTEPH potentially attributable to COVID-19-associated PE with historical comparator years. All individual cases of suspected CTEPH were reviewed by the MDT for evidence of associated COVID-19. In a separate multicentre cohort, the risk of developing CTEPH following hospitalisation with COVID-19 was calculated using simple clinical parameters at a median of 5â months post-hospital discharge according to existing risk scores using symptoms, ECG and N-terminal pro-brain natriuretic peptide. RESULTS: By the second year of the pandemic, CTEPH diagnoses had returned to the pre-pandemic baseline (23.1 versus 27.8 cases per month; p=0.252). Of 334 confirmed CTEPD/CTEPH cases, four (1.2%) patients were identified to have CTEPH potentially associated with COVID-19 PE, and a further three (0.9%) CTEPD without PH. Of 1094 patients (mean age 58â years, 60.4% male) hospitalised with COVID-19 screened across the UK, 11 (1.0%) were at high risk of CTEPH at follow-up, none of whom had a diagnosis of CTEPH made at the national MDT. CONCLUSION: A priori risk of developing CTEPH following COVID-19-related hospitalisation is low. Simple risk scoring is a potentially effective way of screening patients for further investigation.
Asunto(s)
COVID-19 , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/diagnóstico , Reino Unido/epidemiología , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/etiología , Femenino , Embolia Pulmonar/epidemiología , Masculino , Persona de Mediana Edad , Anciano , Enfermedad Crónica , SARS-CoV-2 , Estudios de Cohortes , Incidencia , Adulto , Hospitalización/estadística & datos numéricosRESUMEN
We have demonstrated a Pd(0)-catalyzed Heck/C(sp3)-H activation cascade for the synthesis of spirocyclopropyl oxindoles in high yields from easily accessible ortho-bromoacrylamides. The formation of spirocyclopropyl oxindole is guided by an unconventional four-membered palladacycle through C(sp3)-H activation. The reaction exhibits a wide range of substrate scope and operates efficiently with a mere 0.5 mol % of Pd-catalyst. In addition, the use of microwave conditions facilitates rapid completion of the reaction. Furthermore, this spirocyclopropanation strategy can be coupled with [3 + 2] cycloaddition to produce spiropyrrolidine oxindoles, offering a valuable approach for the preparation of alkaloids such as (±)-horsfiline and (±)-coerulescine.
RESUMEN
Rare-earth element Gd doped CoSi, Co1-xGdxSi (x= 0.01), is investigated using x-ray diffraction and magnetization. It crystallizes in B20 cubic structure with lattice parameter ofa= 4.4429 Å. The alloy exhibits two antiferromagnetic transitions AFM-I at 38.44 K and AFM-II at 21.87 K followed by an upturn of magnetization belowTut= 9.79 K as illustrated through the temperature-magnetic fieldT-Hphase diagram. AFM-I state is incommensurate. AFM-II state is weakly correlated as inferred from field-induced transition to AFM-I state. Further, AFM-I state is reported to transform to ferromagnetic state in high magnetic fields. The present study stimulates an approach to derive novel and exotic magnetic materials by substituting rare-earth in transition metal monosilicides.
RESUMEN
In the previous work [Reddy et al., J. Chem. Phys. 151, 044307 (2019)], we have analyzed the dynamics of the intramolecular singlet fission process in a series of prototypical pentacene-based dimers, where the pentacene monomers are covalently bonded to a phenylene linker in ortho, meta, and para positions. The results obtained were qualitatively consistent with the experimental data available, showing an ultrafast population of the multiexcitonic state that mainly takes place via a mediated (superexchange-like) mechanism involving charge transfer and doubly excited states. Our results also highlighted the instrumental role of molecular vibrations in the process as a sizable population of the multiexcitonic state could only be obtained through vibronic coupling. Here, we extend these studies and investigate the effect of the laser field on the dynamics of intramolecular singlet fission by explicitly including the coupling to the laser field in our model. In this manner, and by selectively tuning the laser field to the different low-lying absorption bands of the systems investigated, we analyze the wavelength dependence of the intramolecular singlet fission process. In addition, we have also analyzed how the nature of the initially photoexcited electronic state (either localized or delocalized) affects its dynamics. Altogether, our results provide new insights into the design of intramolecular singlet fission-active molecules.
RESUMEN
This paper presents a comprehensive study on the implementation and analysis of PID controllers in an automated voltage regulator (AVR) system. A novel tuning technique, Virtual Time response-based iterative gain evaluation and re-design (V-Tiger), is introduced to iteratively adjust PID gains for optimal control performance. The study begins with the development of a mathematical model for the AVR system and initialization of PID gains using the Pessen Integral Rule. Virtual time-response analysis is then conducted to evaluate system performance, followed by iterative gain adjustments using Particle Swarm Optimization (PSO) within the V-Tiger framework. MATLAB simulations are employed to implement various controllers, including the V-Tiger PID controller, and their performance is compared in terms of transient response, stability, and control signal generation. Robustness analysis is conducted to assess the system's stability under uncertainties, and worst-case gain analysis is performed to quantify robustness. The transient response of the AVR with the proposed PID controller is compared with other heuristic controllers such as the Flower Pollination Algorithm, Teaching-Learning-based Optimization, Pessen Integral Rule, and Zeigler-Nichols methods. By measuring the peak closed-loop gain of the AVR with the controller and adding uncertainty to the AVR's field exciter and amplifier, the robustness of proposed controller is determined. Plotting the performance degradation curves yields robust stability margins and the accompanying maximum uncertainty that the AVR can withstand without compromising its stability or performance. Based on the degradation curves, robust stability margin of the V-Tiger PID controller is estimated at 3.5. The worst-case peak gains are also estimated using the performance degradation curves. Future research directions include exploring novel optimization techniques for further enhancing control performance in various industrial applications.
RESUMEN
We report on the magnetic, electrical transport, caloric and electronic structure properties of TbFe4.4Al7.6polycrystalline alloy using experiment and theory. The alloy crystallizes in tetragonal structure with I4/mmm space group with lattice parametersa = b= 8.7234(5) Å andc= 5.0387(6) Å. It is ferrimagnetic with a compensation temperature ofTcmpâ¼151 K, Curie-Weiss temperatureθCWâ¼172.11 K and an effective magnetic momentµeff= (2.37±0.07)µB/f.u withZ= 2. At low temperatures, kinetic arrest-like first-order phase transition is realized through the thermal hysteresis between field-cooled cooling and field-cooled warming curves ofM(T) and virgin curves ofM(H) andρ(H)which are outside the hysteresis loops with metamagnetic transition. The high magnetic field suppression of multiple transitions and reduced coercive fieldHcoerand remnant magnetizationMremwith increasing temperature are reported.HcoerandMremcease to exist above the compensation temperatureTcmp. A correlation between the isothermal magnetization and resistivity is discussed. Specific heatC(T) analysis reveals a Sommerfeld parameter ofγ= 0.098 Jâ mol-1â K-2and a Debye temperature ofθDâ¼351.2 K. The sample is metallic as inferred from theρ(T)behavior and Sommerfeld parameter. The magnetoresistance of the alloy is low and negative which indicates the suppression of weak spin-fluctuations. This alloy avoids the tricritical point despite first-to-second order phase transition. The electronic and magnetic structure calculations, by making use of full potential linearized augmented plane wave method, suggest metallic ferrimagnetic ground state of TbFe4.4Al7.6with Tb atoms contributing ferromagnetically (5.87µB) and Fe atoms with antiferromagnetic contribution (2.67µB), in close agreement with the experimental observation.
RESUMEN
Cyperus rotundus L. is a widely distributed invasive weed plant with vast traditional medicinal uses. Herein, the methanolic root extract of C. rotundus and its fractions (n-hexane, chloroform, n-butanol, and aqueous) were evaluated for insecticidal activity against nymphs of Aphis craccivora Koch and crawlers of Planococcus lilacinus (Cockerell) to find promising lead (s). In contact topical assay, among extract/fractions, n-hexane fraction exhibited more toxicity against A. craccivora (LD50 = 1.12 µg/insect) and P. lilacinus (LD50 = 0.94 µg/insect). The chemical analysis of n-hexane fraction revealed a volatile composition similar to that of the essential oil (EO) of C. rotundus roots. Hence, EO was extracted using water and deep eutectic solvents (DESs) as cosolvent, which revealed enhancement in EO yield (from 0.28 to 0.46% w/w) on implementing DESs. A total of 35 diverse volatile metabolites were identified in all EO samples, accounting for 85.0 to 91.8% of chemical composition, having cyperotundone, cyperene mustakone, isolongifolen-5-one, boronia butenal as major constituents. The EO obtained with DES-7 [choline chloride: ethylene glycol (1:4)] and DES-6 [choline chloride: lactic acid (1:3)] were found effective against A. craccivora (LD50 = 0.62-0.87 µg/insect) and P. lilacinus (LD50= 0.59-0.67 µg/insect) after 96 h. NMR analysis of EO revealed cyperotundone as a major compound, which was isolated along with cyperene and cyperene epoxide. All the molecules were found effective against P. lilacinus, whereas against A. craccivora cyperotundone, cyperene and cyperene epoxide showed promising toxicity (LD50 = 0.74-0.86 µg/insect). Extract/fractions, EO, and isolated molecules showed a significant reproductive inhibition rate of A. craccivora at higher concentrations. All the tested concentrations of cyperotundone showed significant inhibition of acetylcholinesterase (AChE) and glutathione-S-transferase (GST) in A. craccivora and P. lilacinus. Based upon the present study, C. rotundus can be recommended to control targeted insects in the greenhouse/field conditions after performing bio-efficacy and phytotoxicity studies.
Asunto(s)
Cyperus , Hexanos , Insecticidas , Sesquiterpenos , Insecticidas/farmacología , Malezas , Cyperus/química , Acetilcolinesterasa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Colina , Compuestos EpoxiRESUMEN
The current study was designed to test a functional food (FF) mixture containing aldose reductase inhibitors and antiglycation bioactive compounds for suppressing the onset and progression of cataracts in a diabetic rat model. Two-month-old Sprague Dawley rats were grouped as control (C), diabetes untreated (D), and diabetic rats treated with FF at two doses (FF1 = 1.35 g and FF2 = 6.25 g/100g of diet). Diabetes was induced by a single injection of streptozotocin. The FF is a mixture of amla, turmeric, black pepper, cinnamon, ginger, and fenugreek added to the rodent diet. The status of cataracts was monitored weekly by a slit lamp examination for 20 weeks, after which animals were sacrificed to collect eye lenses. Feeding FF1 and FF2 to diabetic rats yielded a significant anti-hyperglycaemic effect and marginally prevented body weight loss. FF delayed cataract progression, and FF2 showed better efficacy than FF1. FF prevented the loss of lens crystallins and their insolubilization in diabetic rats. The antioxidant potential of FF was evident with the lowered protein carbonyls, lipid peroxidation, and prevention of altered antioxidant enzyme activities induced by diabetes. These studies demonstrate the efficacy of plant-derived dietary supplements against the onset and progression of cataracts in a well-established rat model of diabetic eye disease.
Asunto(s)
Catarata , Diabetes Mellitus Experimental , Cristalino , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Roedores/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas Sprague-Dawley , Alimentos Funcionales , Catarata/tratamiento farmacológico , Catarata/prevención & control , Aldehído Reductasa/metabolismoRESUMEN
Herein, we have reported the synthesis of a macrocyclic organosulfur ligand (L1) having a seventeen-membered macrocyclic ring. Subsequently, the corresponding trans-palladium complex (C1) of bulky macrocyclic organosulfur ligand (L1) was synthesized by reacting it with PdCl2 (CH3 CN)2 salt. The newly synthesized ligand and complex were characterized using various analytical and spectroscopic techniques. The complex showed a square planar geometry with trans orientation of two ligands around the palladium center. The complex possesses intramolecular SCH Cl interactions of 2.648â Å between the macrocyclic ligand and palladium dichloride. The potential energy surface (PES) for the rotational process of C1 suggested a barrier of ~23.81â kcal/mol for chlorine rotation. Furthermore, the bulky macrocyclic organosulfur ligand stabilized palladium complex (C1) was used as a catalyst (2.5â mol %) for α-olefination of nitriles by primary alcohols. The α,ß-unsaturated nitrile compounds were found to be the major product of the reaction (57-78 % yield) with broad substrate scope and large functional group tolerance. Notably, the saturated nitrile product was not observed during the reaction. The mechanistic studies suggested the formation of H2 and H2 O as only by-products of the reaction, thereby making the protocol greener and sustainable.