Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(24): 5069-5073, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38847514

RESUMEN

We have demonstrated a Pd(0)-catalyzed Heck/C(sp3)-H activation cascade for the synthesis of spirocyclopropyl oxindoles in high yields from easily accessible ortho-bromoacrylamides. The formation of spirocyclopropyl oxindole is guided by an unconventional four-membered palladacycle through C(sp3)-H activation. The reaction exhibits a wide range of substrate scope and operates efficiently with a mere 0.5 mol % of Pd-catalyst. In addition, the use of microwave conditions facilitates rapid completion of the reaction. Furthermore, this spirocyclopropanation strategy can be coupled with [3 + 2] cycloaddition to produce spiropyrrolidine oxindoles, offering a valuable approach for the preparation of alkaloids such as (±)-horsfiline and (±)-coerulescine.

2.
J Chem Phys ; 160(19)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38767260

RESUMEN

In the previous work [Reddy et al., J. Chem. Phys. 151, 044307 (2019)], we have analyzed the dynamics of the intramolecular singlet fission process in a series of prototypical pentacene-based dimers, where the pentacene monomers are covalently bonded to a phenylene linker in ortho, meta, and para positions. The results obtained were qualitatively consistent with the experimental data available, showing an ultrafast population of the multiexcitonic state that mainly takes place via a mediated (superexchange-like) mechanism involving charge transfer and doubly excited states. Our results also highlighted the instrumental role of molecular vibrations in the process as a sizable population of the multiexcitonic state could only be obtained through vibronic coupling. Here, we extend these studies and investigate the effect of the laser field on the dynamics of intramolecular singlet fission by explicitly including the coupling to the laser field in our model. In this manner, and by selectively tuning the laser field to the different low-lying absorption bands of the systems investigated, we analyze the wavelength dependence of the intramolecular singlet fission process. In addition, we have also analyzed how the nature of the initially photoexcited electronic state (either localized or delocalized) affects its dynamics. Altogether, our results provide new insights into the design of intramolecular singlet fission-active molecules.

3.
Chem Asian J ; 19(4): e202300935, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38116906

RESUMEN

Herein, we have reported the synthesis of a macrocyclic organosulfur ligand (L1) having a seventeen-membered macrocyclic ring. Subsequently, the corresponding trans-palladium complex (C1) of bulky macrocyclic organosulfur ligand (L1) was synthesized by reacting it with PdCl2 (CH3 CN)2 salt. The newly synthesized ligand and complex were characterized using various analytical and spectroscopic techniques. The complex showed a square planar geometry with trans orientation of two ligands around the palladium center. The complex possesses intramolecular SCH…Cl interactions of 2.648 Šbetween the macrocyclic ligand and palladium dichloride. The potential energy surface (PES) for the rotational process of C1 suggested a barrier of ~23.81 kcal/mol for chlorine rotation. Furthermore, the bulky macrocyclic organosulfur ligand stabilized palladium complex (C1) was used as a catalyst (2.5 mol %) for α-olefination of nitriles by primary alcohols. The α,ß-unsaturated nitrile compounds were found to be the major product of the reaction (57-78 % yield) with broad substrate scope and large functional group tolerance. Notably, the saturated nitrile product was not observed during the reaction. The mechanistic studies suggested the formation of H2 and H2 O as only by-products of the reaction, thereby making the protocol greener and sustainable.

4.
J Org Chem ; 88(4): 2023-2033, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36753536

RESUMEN

A serendipitous Rauhut-Currier dimerization of 1,1-disubstituted activated olefins derived from Morita-Baylis-Hillman adducts was observed in the presence of DABCO. The reaction is driven by the migration of an acyl group and produces multifunctionalized enol esters in yields greater than 90% in most cases, without necessitating column chromatographic purification. The acyl transfer is thought to proceed via a transition state typical of a Morita-Baylis-Hillman (MBH) reaction, supported by a brief mechanistic study involving computational calculations.

5.
J Phys Chem Lett ; : 5094-5100, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35653702

RESUMEN

We placed two pentacene chromophores at the termini of a diacetylene linker to investigate the impact of excitation wavelength, conformational flexibility, and vibronic coupling on singlet fission. Photoexcitation of the low-energy absorption results in a superposed mixture of states, which transform on an ultrafast time-scale into a spin-correlated and vibronically coupled/hot delocalized triplet pair 1(T1T1)deloc. Regardless of temperature, the lifetime for 1(T1T1)deloc is less than 2 ps. In contrast, photoexcitation of the high-energy absorption results in the formation of 1(T1T1)deloc lasting 1.0 ps, which then decays at room temperature within 4 ps via triplet-triplet annihilation. Lowering the temperature enables 1(T1T1)deloc to delocalize and vibronically decouple, in turn affording 1(T1T1)loc. In addition, our results suggest that the quasi-free rotation at the diacetylene spacer may lead to twisted conformations with very low SF quantum yields, highlighting the need of controlling this structural aspect in the design of new singlet fission active molecules.

6.
Chem Asian J ; 17(3): e202101199, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919329

RESUMEN

This report describes the syntheses of three new trans-palladium dichloride complexes of bulky selenium ligands. These complexes possess a Cl-Pd-Cl rotor spoke attached to a Se-Pd-Se axle. The new ligands and palladium complexes (C1-C3) were characterized with the help of NMR, HRMS, UV-Vis., IR, and elemental analysis. The single-crystal structure of metal complex C2 confirmed a square planar geometry of complex with trans-orientation. The X-ray structure revealed intramolecular secondary interactions (SeCH-Cl) between chlorine of PdCl2 and CH2 proton of selenium ligand. Variable-temperature NMR data shows coalescence of diastereotopic protons, which indicates pyramidal inversion of selenium atom at elevated temperature. The relaxed potential energy scan of C2 suggests a rotational barrier of ∼12.5 kcal/mol for rotation of chlorine atom through Cl-Pd-Cl rotor. The complex C3 possesses dual intramolecular secondary interactions (OCH2 -Cl and SeCH2 -Cl) with stator ligand. Molecular rotor C2 was found to be a most efficient catalyst for the decarboxylative Heck-coupling under mild reaction conditions. The protocol is applicable to a broad range of substrates with large functional group tolerance and low catalyst loading (2.5 mol %). The mechanism of decarboxylative Heck-coupling reaction was investigated through experimental and computational studies. Importantly the reaction works under silver-free conditions which reduces the cost of overall protocol. Further, the catalyst also worked for decarboxylative arylation and decarboxylative Suzuki-Miyaura coupling reactions with good yields of the coupled products.

7.
J Chem Phys ; 151(4): 044307, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31370515

RESUMEN

We analyze the dynamics of intramolecular singlet fission in a series of pentacene-based dimers consisting of two pentacene-like chromophores covalently bonded to a phenylene linker in ortho, meta, and para positions. The study uses a quantum dynamical approach that employs a model vibronic Hamiltonian whose parameters are obtained using multireference perturbation theory methods. The results highlight the different role of the direct and mediated mechanism in these systems, showing that the population of the multiexcitonic state, corresponding to the first step of the intramolecular singlet fission process, occurs mainly through a superexchange-like mechanism involving doubly excited or charge transfer states that participate in the process in a virtual way. In addition, the systems investigated provide insight into the roles that built-in geometrical constraints and the electronic structure of the spacer play in the intramolecular singlet fission process.

8.
J Phys Chem Lett ; 9(20): 5979-5986, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30257561

RESUMEN

We investigate the dynamics of intramolecular singlet fission in a dimer consisting of two pentacene-based chromophores covalently bonded to a phenylene spacer using an approach that combines high-level ab initio multireference perturbation theory methods and quantum dynamical simulations. The results show that the population of the multiexcitonic state, corresponding to the first step of singlet fission, is facilitated by the existence of higher-lying doubly excited and charge transfer states that participate in a superexchange-like way. The important role played by high-frequency ring-breathing molecular vibrations in the process is also discussed.

9.
Nat Commun ; 8: 15171, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28516916

RESUMEN

When molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron-hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer. We observe the key intermediates in the singlet fission process, including the formation and decay of a quintet state that precedes formation of the pentacene triplet excitons. Using these combined data, we develop a single kinetic model that describes the data over seven temporal orders of magnitude both at room and cryogenic temperatures.

10.
J Phys Chem A ; 120(40): 7881-7889, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27704833

RESUMEN

Vibronic interactions in the two energetically lowest electronic states (X̃2Πg-Ã2Πu) of the diacetylene radical cation (C4H2•+) are theoretically examined here. The spectroscopy of these two electronic states of C4H2•+ has been a subject of considerable interest and measured in the laboratory by various groups. Inspired by numerous experimental data, we attempt here a detailed investigation of vibronic interactions within and between the doubly degenerate Π electronic states and their impact on the vibronic structure of each state. A vibronic coupling model is constructed in a diabatic electronic basis and with the aid of ab initio quantum chemistry calculations. The vibronic structures of the electronic states are calculated by time-independent and time-dependent quantum mechanical methods. The progression of vibrational modes in the vibronic band is identified, assigned, and compared with the literature data. The nonradiative internal conversion dynamics is also examined and discussed.

11.
Nanoscale ; 8(19): 10113-23, 2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27122097

RESUMEN

We show unambiguous and compelling evidence by means of pump-probe experiments, which are complemented by calculations using ab initio multireference perturbation theory, for intramolecular singlet fission (SF) within two synthetically tailored pentacene dimers with cross-conjugation, namely XC1 and XC2. The two pentacene dimers differ in terms of electronic interactions as evidenced by perturbation of the ground state absorption spectra stemming from stronger through-bond contributions in XC1 as confirmed by theory. Multiwavelength analysis, on one hand, and global analysis, on the other hand, confirm that the rapid singlet excited state decay and triplet excited state growth relate to SF. SF rate constants and quantum yields increase with solvent polarity. For example, XC2 reveals triplet quantum yields and rate constants as high as 162 ± 10% and (0.7 ± 0.1) × 10(12) s(-1), respectively, in room temperature solutions.

12.
J Chem Phys ; 140(8): 084311, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24588173

RESUMEN

Photodetachment spectroscopy of B(7)(-) is theoretically studied in this paper. Calculated photodetachment bands are compared with the available experimental results and assigned to the vibronic structure of the electronic ground and excited states of the neutral B7 cluster. The complex structure of photodetachment bands is found to arise from many stable isomers of B(7)(-) of different symmetry point group. In this study we focus on three most stable isomers of B(7)(-) and examine their photodetachment bands. Extensive quantum chemistry calculations are carried out to establish the potential energy surfaces and the coupling surfaces of the electronic states of neutral B7 originating from each of the three isomers. A diabatic electronic ansatz is employed and the nuclear dynamics is studied both by time-independent and time-dependent quantum mechanical methods. Both agreements and discrepancies of the theoretical results with the experimental findings are discussed.

13.
J Chem Phys ; 137(5): 054311, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22894352

RESUMEN

A theoretical study of the photoabsorption spectroscopy of hexafluorobenzene (HFBz) is presented in this paper. The chemical effect due to fluorine atom substitution on the electronic structure of benzene (Bz) saturates in HFBz. State- of-the-art quantum chemistry calculations are carried out to establish potential energy surfaces and coupling surfaces of five energetically low-lying electronic (two of them are orbitally degenerate) states of HFBz. Coupling of these electronic states caused by the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) type of interactions are examined. The impact of these couplings on the nuclear dynamics of the participating electronic states is thoroughly investigated by quantum mechanical methods and the results are compared with those observed in the experiments. The complex structure of the S(1) ← S(0) absorption band is found to originate from a very strong nonadiabatic coupling of the S(2) (of πσ* origin) and S(1) (of ππ* origin) state. While S(2) state is orbitally degenerate and JT active, the S(1) state is nondegenerate. These states form energetically low-lying conical intersections (CIs) in HFBz. These CIs are found to be the mechanistic bottleneck of the observed low quantum yield of fluorescence emission, non overlapping absorption, and emission bands of HFBz and contribute to the spectral width. Justification is also provided for the observed two peaks in the second absorption (the unassigned "c band") band of HFBz. The peaks observed in the third, fourth, and fifth absorption bands are also identified and assigned.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...