Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34259628

RESUMEN

The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis.


Nerve cells, or neurons, are the central building blocks of brain circuits. Their damage, death or loss of function leads to cognitive decline. Neural stem/progenitor cells (NSPCs) first appear during embryo development, generating most of the neurons found in the nervous system. However, the adult brain retains a small subpopulation of NSPCs, which in some species are an important source of new neurons throughout life. In the adult mouse brain the largest population of NSPCs, known as B cells, is found in an area called the ventricular-subventricular zone (V-SVZ). These V-SVZ B cells have properties of specialized support cells known as astrocytes, but they can also divide and generate intermediate 'progenitor cells' called C cells. These, in turn, divide to generate large numbers of young 'A cells' neurons that undertake a long and complex migration from V-SVZ to the olfactory bulb, the first relay in the central nervous system for the processing of smells. Depending on their location in the V-SVZ, B cells can generate different kinds of neurons, leading to at least ten subtypes of neurons. Why this is the case is still poorly understood. To examine this question, Cebrián-Silla, Nascimento, Redmond, Mansky et al. determined which genes were expressed in B, C and A cells from different parts of the V-SVZ. While cells within each of these populations had different expression patterns, those that originated in the same V-SVZ locations shared a set of genes, many of which associated with regional specification in the developing brain. Some, however, were intriguingly linked to hormonal regulation. Salient differences between B cells depended on whether the cells originated closer to the top ('dorsal' position) or to the bottom of the brain ('ventral' position). This information was used to stain slices of mouse brains for the RNA and proteins produced by these genes in different regions. These experiments revealed dorsal and ventral territories containing B cells with distinct 'gene expression'. This study highlights the heterogeneity of NSPCs, revealing key molecular differences among B cells in dorsal and ventral areas of the V-SVZ and reinforcing the concept that the location of NSPCs determines the types of neuron they generate. Furthermore, the birth of specific types of neurons from B cells that are so strictly localized highlights the importance of neuronal migration to ensure that young neurons with specific properties reach their appropriate destination in the olfactory bulb. The work by Cebrián-Silla, Nascimento, Redmond, Mansky et al. has identified sets of genes that are differentially expressed in dorsal and ventral regions which may contribute to regional regulation. Furthering the understanding of how adult NSPCs differ according to their location will help determine how various neuron types emerge in the adult brain.


Asunto(s)
Ventrículos Laterales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Transcriptoma/genética , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Microdisección , Células-Madre Neurales/química , Células-Madre Neurales/citología , Análisis de la Célula Individual
2.
Cell Rep ; 27(2): 429-441.e3, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970247

RESUMEN

The adult mouse brain contains an extensive neurogenic niche in the lateral walls of the lateral ventricles. This epithelium, which has a unique pinwheel organization, contains multiciliated ependymal (E1) cells and neural stem cells (B1). This postnatal germinal epithelium develops from the embryonic ventricular zone, but the lineage relationship between E1 and B1 cells remains unknown. Distinct subpopulations of radial glia (RG) cells in late embryonic and early postnatal development either expand their apical domain >11-fold to form E1 cells or retain small apical domains that coalesce into the centers of pinwheels to form B1 cells. Using independent methods of lineage tracing, we show that individual RG cells can give rise to clones containing E1 and B1 cells. This study reveals key developmental steps in the formation of the postnatal germinal niche and the shared cellular origin of E1 and B1 cells.


Asunto(s)
Epéndimo/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Animales , Humanos , Ratones
3.
Neuron ; 91(4): 824-836, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27499083

RESUMEN

Myelination occurs selectively around neuronal axons to increase the efficiency and velocity of action potentials. While oligodendrocytes are capable of myelinating permissive structures in the absence of molecular cues, structurally permissive neuronal somata and dendrites remain unmyelinated. Utilizing a purified spinal cord neuron-oligodendrocyte myelinating co-culture system, we demonstrate that disruption of dynamic neuron-oligodendrocyte signaling by chemical cross-linking results in aberrant myelination of the somatodendritic compartment of neurons. We hypothesize that an inhibitory somatodendritic cue is necessary to prevent non-axonal myelination. Using next-generation sequencing and candidate profiling, we identify neuronal junction adhesion molecule 2 (JAM2) as an inhibitory myelin-guidance molecule. Taken together, our results demonstrate that the somatodendritic compartment directly inhibits myelination and suggest a model in which broadly indiscriminate myelination is tailored by inhibitory signaling to meet local myelination requirements.


Asunto(s)
Molécula B de Adhesión de Unión/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Técnicas de Cocultivo , Molécula B de Adhesión de Unión/biosíntesis , Molécula B de Adhesión de Unión/genética , Ratones , Ratones Noqueados , Vaina de Mielina/ultraestructura , Oligodendroglía/ultraestructura , Cultivo Primario de Células , Ratas , Médula Espinal/fisiología , Médula Espinal/ultraestructura
4.
J Neurosci ; 36(26): 6937-48, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358452

RESUMEN

UNLABELLED: Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT: Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.


Asunto(s)
Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Nervio Óptico/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Antígenos/genética , Antígenos/metabolismo , Toxina del Cólera/metabolismo , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/ultraestructura , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/ultraestructura , Conducción Nerviosa/genética , Nervio Óptico/ultraestructura , Organogénesis/genética , Organogénesis/fisiología , Estimulación Luminosa , Proteoglicanos/genética , Proteoglicanos/metabolismo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vías Visuales/ultraestructura
5.
Neuron ; 91(1): 41-55, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27321923

RESUMEN

Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas Motoras/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Biomarcadores/análisis , Proteínas Portadoras/genética , Muerte Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/genética , Ratones Transgénicos , Neuroglía/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo
6.
Nat Neurosci ; 19(2): 190-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26814588

RESUMEN

One of the most significant paradigm shifts in membrane remodeling is the emerging view that membrane transformation is not exclusively controlled by cytoskeletal rearrangement, but also by biophysical constraints, adhesive forces, membrane curvature and compaction. One of the most exquisite examples of membrane remodeling is myelination. The advent of myelin was instrumental in advancing the nervous system during vertebrate evolution. With more rapid and efficient communication between neurons, faster and more complex computations could be performed in a given time and space. Our knowledge of how myelin-forming oligodendrocytes select and wrap axons has been limited by insufficient spatial and temporal resolution. By virtue of recent technological advances, progress has clarified longstanding controversies in the field. Here we review insights into myelination, from target selection to axon wrapping and membrane compaction, and discuss how understanding these processes has unexpectedly opened new avenues of insight into myelination-centered mechanisms of neural plasticity.


Asunto(s)
Vaina de Mielina/fisiología , Plasticidad Neuronal/fisiología , Animales , Axones/fisiología , Membrana Celular/metabolismo , Humanos , Neuronas/fisiología
7.
Nat Med ; 20(8): 954-960, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997607

RESUMEN

Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Esclerosis Múltiple/tratamiento farmacológico , Antagonistas Muscarínicos/aislamiento & purificación , Fibras Nerviosas Mielínicas/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Clemastina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Antagonistas de los Receptores Histamínicos H1/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antagonistas Muscarínicos/farmacología , Nanoestructuras , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Ratas , Ratas Sprague-Dawley , Regeneración/efectos de los fármacos
8.
Nature ; 509(7499): 189-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24776795

RESUMEN

Astrocytes, the most abundant cells in the central nervous system, promote synapse formation and help to refine neural connectivity. Although they are allocated to spatially distinct regional domains during development, it is unknown whether region-restricted astrocytes are functionally heterogeneous. Here we show that postnatal spinal cord astrocytes express several region-specific genes, and that ventral astrocyte-encoded semaphorin 3a (Sema3a) is required for proper motor neuron and sensory neuron circuit organization. Loss of astrocyte-encoded Sema3a leads to dysregulated α-motor neuron axon initial segment orientation, markedly abnormal synaptic inputs, and selective death of α- but not of adjacent γ-motor neurons. In addition, a subset of TrkA(+) sensory afferents projects to ectopic ventral positions. These findings demonstrate that stable maintenance of a positional cue by developing astrocytes influences multiple aspects of sensorimotor circuit formation. More generally, they suggest that regional astrocyte heterogeneity may help to coordinate postnatal neural circuit refinement.


Asunto(s)
Astrocitos/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Astrocitos/citología , Axones/fisiología , Polaridad Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Semaforina-3A/deficiencia , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Células Receptoras Sensoriales/citología , Médula Espinal/citología , Sinapsis/metabolismo
9.
Nat Methods ; 9(9): 917-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22796663

RESUMEN

Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fiber diameter and initiate membrane ensheathment before differentiation. The use of nanofiber scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Vaina de Mielina/fisiología , Nanofibras/química , Nanotecnología/métodos , Oligodendroglía/citología , Animales , Proliferación Celular , Femenino , Masculino , Microscopía Electrónica de Rastreo , Polilisina/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...