Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epilepsia ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348199

RESUMEN

OBJECTIVE: POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy. Three of these individuals had epileptic seizures. The aim of this article is to precisely define the epilepsy phenotype associated with de novo heterozygous POLR3B variants. METHODS: We used online gene-matching tools to identify 13 patients with de novo POLR3B variants. We systematically collected genotype and phenotype data from clinicians using two standardized proformas. RESULTS: All 13 patients had novel POLR3B variants. Twelve of 13 variants were classified as pathogenic or likely pathogenic as per American College of Medical Genetics (ACMG) criteria. Patients presented with generalized myoclonic, myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic seizures (EMAtS) in seven patients and "probable EMAtS" in two more. Seizures were treatment resistant in all cases. Three patients became seizure-free. All patients had some degree of developmental delay or intellectual disability. In most cases developmental delay was apparent before the onset of seizures. Three of 13 cases were reported to have developmental stagnation or regression in association with seizure onset. Treatments for epilepsy that were reported by clinicians to be effective were: sodium valproate, which was effective in five of nine patients (5/9) who tried it; rufinamide (2/3); and ketogenic diet (2/3). Additional features were ataxia/incoordination (8/13); microcephaly (7/13); peripheral neuropathy (4/13), and spasticity/hypertonia (6/13). SIGNIFICANCE: POLR3B is a novel genetic developmental and epileptic encephalopathy (DEE) in which EMAtS is the predominant epilepsy phenotype. Ataxia, neuropathy, and hypertonia may be variously observed in these patients.

2.
Clin Genet ; 106(5): 574-584, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38988293

RESUMEN

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.


Asunto(s)
Ancirinas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Alelos , Ancirinas/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Mutación/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
3.
Epilepsia ; 65(5): 1439-1450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491959

RESUMEN

OBJECTIVE: YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS: We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS: The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE: This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.


Asunto(s)
Epilepsia , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Adulto Joven , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/patología , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Fenotipo
4.
Am J Med Genet A ; 194(7): e63531, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421086

RESUMEN

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 3 , Variaciones en el Número de Copia de ADN , Fenotipo , Humanos , Femenino , Masculino , Cromosomas Humanos Par 3/genética , Duplicación Cromosómica/genética , Niño , Variaciones en el Número de Copia de ADN/genética , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Adolescente , Estudios de Cohortes , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Adulto , Lactante
5.
Am J Med Genet A ; 194(5): e63532, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38192009

RESUMEN

Alpha-mannosidosis is a rare autosomal recessive lysosomal storage disorder caused by biallelic mutations in the MAN2B1 gene and characterized by a wide clinical heterogeneity. Diagnosis for this multisystemic disorder is confirmed by the presence of either a deficiency in the lysosomal enzyme acid alpha-mannosidase or biallelic mutations in the MAN2B1 gene. This diagnosis confirmation is crucial for both clinical management and genetic counseling purposes. Here we describe a late diagnosis of alpha-mannosidosis in a patient presenting with syndromic intellectual disability, and a rare retinopathy, where reverse phenotyping played a pivotal role in interpreting the exome sequencing result. While a first missense variant was classified as a variant of uncertain significance, the phenotype-guided analysis helped us detect and interpret an in-trans apparent alu-element insertion, which appeared to be a copy number variant (CNV) not identified by the CNV caller. A biochemical analysis showing abnormal excretion of urinary mannosyloligosaccharide and an enzyme assay permitted the re-classification of the missense variant to likely pathogenic, establishing the diagnosis of alpha-mannosidosis. This work emphasizes the importance of reverse phenotyping in the context of exome sequencing.


Asunto(s)
alfa-Manosidosis , Humanos , alfa-Manosidosis/diagnóstico , alfa-Manosidosis/genética , Variaciones en el Número de Copia de ADN/genética , alfa-Manosidasa/genética , Mutación Missense/genética , Fenotipo
6.
Brain ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038360

RESUMEN

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function (LoF) or gain-of-function (GoF) properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12), and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for LoF and GoF variants. GoF variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age one month), hypertonic, and more often had movement disorders, including hyperekplexia. Patients with LoF variants were older at the time of seizure onset (median age 16 months), hypotonic, and had sleeping disturbances. LoF and GoF variants were disease-causing in both sexes but affected males often carried de novo or hemizygous LoF variants inherited from healthy mothers, whereas all but one affected females had de novo heterozygous GoF variants.

7.
Am J Hum Genet ; 110(11): 1959-1975, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37883978

RESUMEN

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood.


Asunto(s)
Enfermedades Musculares , Trastornos del Neurodesarrollo , Adulto , Humanos , Proteína que Contiene Valosina/genética , Hipotonía Muscular , Mutación Missense/genética
8.
Prenat Diagn ; 43(6): 734-745, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36914926

RESUMEN

OBJECTIVE: We aimed to gather fetal cases carrying a 7q11.23 copy number variation (CNV) and collect precise clinical data to broaden knowledge of antenatal features in these syndromes. METHODS: We retrospectively recruited unrelated cases with 7q11.23 deletion, known as Williams-Beuren syndrome (WBS), or 7q11.23 duplication who had prenatal ultrasound findings. We collected laboratory and clinical data, fetal ultrasound, cardiac ultrasound and fetal autopsy reports from 18 prenatal diagnostic centers throughout France. RESULTS: 40 fetuses with WBS were collected and the most common features were intra-uterine growth retardation (IUGR) (70.0%, 28/40), cardiovascular defects (30.0%, 12/40), polyhydramnios (17.5%, 7/40) and protruding tongue (15.0%, 6/40). Fetal autopsy reports were available for 11 cases and were compared with ultrasound prenatal features. Four cases of fetuses with 7q11.23 microduplication were collected and prenatal ultrasound signs were variable and often isolated. CONCLUSION: This work strengthens the fact that 7q11.23 CNVs are associated with a broad spectrum of antenatal presentations. IUGR and cardiovascular defects were the most frequent ultrasound signs. By reporting the biggest series of antenatal WBS, we aim to better delineate distinctive signs in fetuses with 7q11.23 CNVs.


Asunto(s)
Síndrome de Williams , Humanos , Femenino , Embarazo , Síndrome de Williams/diagnóstico por imagen , Síndrome de Williams/genética , Síndrome de Williams/complicaciones , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Retardo del Crecimiento Fetal , Ultrasonografía
10.
Am J Med Genet A ; 191(2): 445-458, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369750

RESUMEN

Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.


Asunto(s)
Síndrome de DiGeorge , Síndrome de Down , Epilepsia , Discapacidad Intelectual , Microcefalia , Humanos , Cromosomas Humanos Par 1 , Hipotonía Muscular , Deleción Cromosómica , Fenotipo
11.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
12.
Prenat Diagn ; 42(1): 118-135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34894355

RESUMEN

OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.


Asunto(s)
Proteínas de Unión al Calcio/análisis , Trastornos de los Cromosomas/complicaciones , Proteínas de la Membrana/análisis , Adulto , Proteínas de Unión al Calcio/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 6/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Fenotipo , Embarazo , Estudios Retrospectivos , Trisomía/genética , Virulencia/genética , Virulencia/fisiología
13.
Hum Genomics ; 15(1): 44, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256850

RESUMEN

BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Trastorno Autístico/epidemiología , Trastorno Autístico/patología , Elementos de Facilitación Genéticos/genética , Exoma/genética , Femenino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Hipotonía Muscular/epidemiología , Hipotonía Muscular/patología , Mutación/genética , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología
14.
Clin Genet ; 100(4): 386-395, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34164801

RESUMEN

13q12.3 microdeletion syndrome is a rare cause of syndromic intellectual disability. Identification and genetic characterization of patients with 13q12.3 microdeletion syndrome continues to expand the phenotypic spectrum associated with it. Previous studies identified four genes within the approximately 300 Kb minimal critical region including two candidate protein coding genes: KATNAL1 and HMGB1. To date, no patients carrying a sequence-level variant or a single gene deletion in HMGB1 or KATNAL1 have been described. Here we report six patients with loss-of-function variants involving HMGB1 and who had phenotypic features similar to the previously described 13q12.3 microdeletion syndrome cases. Common features included developmental delay, language delay, microcephaly, obesity and dysmorphic features. In silico analyses suggest that HMGB1 is likely to be intolerant to loss-of-function, and previous in vitro data are in line with the role of HMGB1 in neurodevelopment. These results strongly suggest that haploinsufficiency of the HMGB1 gene may play a critical role in the pathogenesis of the 13q12.3 microdeletion syndrome.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Heterocigoto , Mutación con Pérdida de Función , Microcefalia/diagnóstico , Microcefalia/genética , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Exones , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteína HMGB1 , Humanos , Hibridación Fluorescente in Situ , Patrón de Herencia , Cariotipo , Masculino , Fenotipo , Secuenciación del Exoma
15.
Clin Genet ; 100(4): 396-404, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34176129

RESUMEN

Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We report 12 additional patients from nine unrelated pedigrees with similar deletions. The deletions were inherited in nine out of 12 patients, suggesting variable expressivity and incomplete penetrance. Four patients had tiny deletions involving only EPHA7, suggesting a critical role of EPHA7 in a neurodevelopmental disability phenotype. We provide further evidence for EPHA7 deletion as a risk factor for neurodevelopmental disorder and delineate its clinical phenotype.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Receptor EphA7/genética , Cromosomas Humanos Par 6 , Hibridación Genómica Comparativa , Femenino , Estudios de Asociación Genética/métodos , Humanos , Hibridación Fluorescente in Situ , Patrón de Herencia , Masculino , Mutación , Linaje , Secuenciación del Exoma
16.
Prenat Diagn ; 39(10): 871-882, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31172545

RESUMEN

OBJECTIVE/METHOD: 1p36 deletion syndrome is considered to be the most common deletion after 22q11.2 deletion. It is characterized by specific facial features, developmental delay, and organ defects. The primary objective of the present multicenter study was to survey all the cases of 1p36 deletion diagnosed prenatally by French cytogenetics laboratories using a chromosomal microarray. We then compared these new cases with the literature data. RESULTS: Ten new cases were reported. On average, the 1p36 deletion was diagnosed at 19 weeks of gestation. The size of the deletion ranged from 1.6 to 16 Mb. The 1p36 deletion was the only chromosomal abnormality in eight cases and was associated with a complex chromosome 1 rearrangement in the two remaining cases. The invasive diagnostic procedure had always been prompted by abnormal ultrasound findings: elevated nuchal translucency, structural brain abnormality, retrognathia, or a cardiac defect. Multiple anomalies were present in all cases. DISCUSSION: We conclude that 1p36 deletion is not associated with any specific prenatal signs. We suggest that a prenatal observation of ventriculomegaly, congenital heart defect, or facial dysmorphism should prompt the clinician to consider a diagnosis of 1p36 deletion syndrome.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Diagnóstico Prenatal , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adulto , Deleción Cromosómica , Trastornos de los Cromosomas/epidemiología , Cromosomas Humanos Par 1/genética , Femenino , Francia/epidemiología , Humanos , Cariotipificación/métodos , Análisis por Micromatrices/métodos , Embarazo , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/estadística & datos numéricos , Estudios Retrospectivos , Adulto Joven
17.
Ann Pathol ; 39(5): 352-356, 2019 Sep.
Artículo en Francés | MEDLINE | ID: mdl-30824318

RESUMEN

Meningeal melanocytic tumors are rare. We report an exceptional case of transformation of a meningeal melanocytoma in a malignant melanoma. The course of the disease extents from 61-years to 85-years and ends with the death of the patient. Besides histopathological and immunohistochemical data, we also report the array CGH study of the melanocytoma and melanoma components suggesting the malignant transformation from whole chromosome gains in the melanocytoma to additional segmental aberrations in the malignant melanoma. Beyond the rarity of this tumor subtype, this case report highlights the potential interest of molecular analyses for diagnostic and prognostic purposes in the field of meningeal melanocytic tumors.


Asunto(s)
Transformación Celular Neoplásica/patología , Melanocitos/patología , Melanoma/patología , Neoplasias Meníngeas/patología , Biomarcadores de Tumor/análisis , Transformación Celular Neoplásica/genética , Hibridación Genómica Comparativa , Resultado Fatal , Estudios de Seguimiento , Humanos , Masculino , Melanoma/complicaciones , Melanoma/genética , Melanoma/cirugía , Antígenos Específicos del Melanoma/análisis , Neoplasias Meníngeas/complicaciones , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/cirugía , Persona de Mediana Edad , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/genética , Reoperación , Trastornos Somatosensoriales/etiología , Tomografía Computarizada por Rayos X , Trastornos de la Visión/etiología , Antígeno gp100 del Melanoma
18.
Appl Immunohistochem Mol Morphol ; 26(10): 714-720, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28362709

RESUMEN

Some melanocytic tumors are diagnostic challenges and require ancillary tools in helping the pathologists to determine their potential of malignancy. We intend to propose a diagnostic algorithm in helping to classify challenging melanocytic tumors combining histology, immunohistochemistry, and cytogenetics. We report on 24 spitzoid and/or misdiagnosed melanocytic tumors studied with a triple p16, Ki-67, and HMB45 immunohistochemistry score, fluorescent in situ hybridization (FISH) with melanoma-dedicated and non-melanoma-dedicated probes and comparative genomic hybridization on DNA microarray (CGH array). Melanoma-dedicated FISH probe classified as favor malignant 8/8 melanomas, 1/2 atypical spitzoid tumor, and 4/14 nevi with polyploidy. Only 10 CGH array assays were contributive and concluded in complex chromosomal patterns as hallmarks of malignancy in 5 melanomas, single isolated imbalances in 3 nevi, and no chromosomal gain or loss in 2 nevi. The p16-Ki-67-HMB45 immunohistochemistry score was favor benign (ie, 0 to 3) in 13/14 nevi and in the favor benign atypical spitzoid tumor according to FISH analyses. The FISH-favor malignant atypical spitzoid tumor, 8/8 melanomas, and 1 tumor initially diagnosed as a Spitz nevus had favor malignant p16-Ki-67-HMB45 immunohistochemistry scores (ie, 4 to 9). Additional FISH analyses detected a 9p21/CDKN2A double deletion, frequently reported in melanomas but not in nevi, in the tumor initially diagnosed as a Spitz nevus with a favor malignant p16-Ki-67-HMB45 score. To conclude, in our opinion, histology and p16-Ki-67-HMB45 immunohistochemistry could consist in first-line tools to diagnose a difficult melanocytic tumor, followed by cytogenetics analyses in cases of discrepancies between histology and immunohistochemistry.


Asunto(s)
Algoritmos , Aberraciones Cromosómicas , Melanoma , Nevo de Células Epitelioides y Fusiformes , Neoplasias Cutáneas , Adolescente , Adulto , Anciano de 80 o más Años , Niño , Preescolar , Hibridación Genómica Comparativa/métodos , Femenino , Humanos , Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ/métodos , Masculino , Melanoma/diagnóstico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Persona de Mediana Edad , Nevo de Células Epitelioides y Fusiformes/genética , Nevo de Células Epitelioides y Fusiformes/metabolismo , Nevo de Células Epitelioides y Fusiformes/patología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...