Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
PLoS One ; 19(6): e0304268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38838004

RESUMEN

American tegumentary leishmaniasis (ATL) diagnosis is an open question, and the search for a solution is urgent. The available tests that detect the etiological agent of the infection are specific for ATL diagnosis. However, they present disadvantages, such as low sensitivity and the need for invasive procedures to obtain the samples. Immunological methods (leishmanin skin test and search for anti-Leishmania antibodies) are good alternatives to the etiological diagnosis of ATL. Presently, we face problems with disease confirmation due to the discontinuity in the production of leishmanin skin test antigen, particularly in resource-poor settings. Aiming to diagnose ATL, we validated rLb6H-ELISA for IgG antibodies using 1,091 samples from leishmaniasis patients and healthy controls, divided into four panels, living in 19 Brazilian endemic and non-endemic states. The rLb6H-ELISA showed a sensitivity of 98.6% and a specificity of 100.0%, with the reference panel comprising 70 ATL patient samples and 70 healthy controls. The reproducibility evaluation showed a coefficient of variation of positive samples ≤ 8.20% for repeatability, ≤ 17,97% for reproducibility, and ≤ 8.12% for homogeneity. The plates sensitized with rLb6H were stable at 4°C and -20°C for 180 days and 37°C for seven days, indicating 12 months of validity. In samples of ATL patients from five research and healthcare centers in endemic and non-endemic areas, rLb6H-ELISA showed a sensitivity of 84.0%; no significant statistical difference was observed among the five centers (chi-square test, p = 0.13). In samples of healthy controls from four areas with different endemicity, a specificity of 92.4% was obtained; lower specificity was obtained in a visceral leishmaniasis high endemicity locality (chi-square test, p<0.001). Cross-reactivity was assessed in 166 other disease samples with a positivity of 13.9%. Based on the good diagnostic performance and the reproducibility and stability of the antigen, we suggest using ELISA-rLb6H to diagnose ATL.


Asunto(s)
Antígenos de Protozoos , Ensayo de Inmunoadsorción Enzimática , Leishmaniasis Cutánea , Humanos , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Antígenos de Protozoos/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Sensibilidad y Especificidad , Adolescente , Reproducibilidad de los Resultados , Proteínas Recombinantes/inmunología , Adulto Joven , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Anciano , Niño , Estudios de Casos y Controles , Brasil/epidemiología
2.
NPJ Vaccines ; 9(1): 12, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200025

RESUMEN

Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts to lower morbidity and mortality. Both advanced candidate vaccines, RTS,S and R21, are subunit (SU) vaccines that target a single Plasmodium falciparum (Pf) pre-erythrocytic (PE) sporozoite (spz) surface protein known as circumsporozoite (CS). These vaccines induce humoral immunity but fail to elicit CD8 + T-cell responses sufficient for long-term protection. In contrast, whole-organism (WO) vaccines, such as Radiation Attenuated Sporozoites (RAS), achieved sterile protection but require a series of intravenous doses administered in multiple clinic visits. Moreover, these WO vaccines must be produced in mosquitos, a burdensome process that severely limits their availability. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. The priming dose is a single dose of self-replicating RNA encoding the full-length P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LIONTM). The trapping dose consists of one dose of WO RAS. Our vaccine induces a strong immune response when administered in an accelerated regimen, i.e., either 5-day or same-day immunization. Additionally, mice after same-day immunization showed a 2-day delay of blood patency with 90% sterile protection against a 3-week spz challenge. The same-day regimen also induced durable 70% sterile protection against a 2-month spz challenge. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.

3.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693598

RESUMEN

Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue. In this study, we engineered injectable, biocompatible hydrogels that function as a local protein therapeutic depot with a high degree of user-customizability. We showcase a PEG-based hydrogel functionalized with bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) handles for its polymerization and functionalization with a variety of payloads. Small-molecule and protein cargos, including chemokines and antibodies, were site-specifically modified with hydrolysable "azidoesters" of varying hydrophobicity via direct chemical conjugation or sortase-mediated transpeptidation. These hydrolysable esters afforded extended release of payloads linked to our hydrogels beyond diffusion; with timescales spanning days to months dependent on ester hydrophobicity. Injected hydrogels polymerize in situ and remain in tissue over extended periods of time. Hydrogel-delivered protein payloads elicit biological activity after being modified with SPAAC-compatible linkers, as demonstrated by the successful recruitment of murine T-cells to a mouse melanoma model by hydrolytically released murine CXCL10. These results highlight a highly versatile, customizable hydrogel-based delivery system for local delivery of protein therapeutics with payload release profiles appropriate for a variety of clinical needs.

4.
ACG Case Rep J ; 10(8): e01129, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37621303

RESUMEN

Splanchnic artery pseudoaneurysms are a known complication of necrotizing pancreatitis. Lumbar artery pseudoaneurysms are rare and usually associated with trauma, renal biopsy, or spinal procedures. We present a rare case of lumbar artery pseudoaneurysms as a complication of necrotizing pancreatitis. A 55-year-old man initially presented with necrotizing biliary pancreatitis complicated by peripancreatic necrotic fluid collections and walled-off necrosis requiring multiple endoscopic ultrasound-guided necrosectomies. Inferoposterior extension of collections to the retroperitoneum caused lumbar artery pseudoaneurysms, leading to hemorrhagic shock from retroperitoneal and intraperitoneal hemorrhages.

5.
Front Med (Lausanne) ; 10: 1177375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457576

RESUMEN

Leprosy reaction (LR) and physical disability (PD) are the most significant clinical complications of leprosy. Herein, we assessed the circulating serum-sTREM-1 and TNF-α levels and their genetic polymorphisms in leprosy. Serum-sTREM-1 and TNF-α levels were measured in leprosy patients (LP) before treatment (n = 51) and from their household contacts (HHCs; n = 25). DNA samples were genotyped using TREM-1 rs2234246 and TNF-α rs1800629-SNP in 210 LPs and 168 endemic controls. The circulating sTREM-1 and TNF-α levels are higher in the multibacillary form. The ROC curve of the serum-sTREM-1 levels was able to differentiate LR from non-LR and PD from non-PD. Similarly, LPs with serum-sTREM-1 levels >210 pg/ml have 3-fold and 6-fold higher chances of presenting with LR and PD, respectively. Genotypes CC+CT of the TREM-1 were associated with leprosy. Taken together, our analyses indicated that sTREM-1 and TNF-α play an important role in the pathogenesis of leprosy and provide promising biomarkers to assist in the diagnosis of leprosy complications.

6.
Res Sq ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461621

RESUMEN

Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.

7.
Mol Ther ; 31(8): 2360-2375, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37403357

RESUMEN

RNA vaccines possess significant clinical promise in counteracting human diseases caused by infectious or cancerous threats. Self-amplifying replicon RNA (repRNA) has been thought to offer the potential for enhanced potency and dose sparing. However, repRNA is a potent trigger of innate immune responses in vivo, which can cause reduced transgene expression and dose-limiting reactogenicity, as highlighted by recent clinical trials. Here, we report that multivalent repRNA vaccination, necessitating higher doses of total RNA, could be safely achieved in mice by delivering multiple repRNAs with a localizing cationic nanocarrier formulation (LION). Intramuscular delivery of multivalent repRNA by LION resulted in localized biodistribution accompanied by significantly upregulated local innate immune responses and the induction of antigen-specific adaptive immune responses in the absence of systemic inflammatory responses. In contrast, repRNA delivered by lipid nanoparticles (LNPs) showed generalized biodistribution, a systemic inflammatory state, an increased body weight loss, and failed to induce neutralizing antibody responses in a multivalent composition. These findings suggest that in vivo delivery of repRNA by LION is a platform technology for safe and effective multivalent vaccination through mechanisms distinct from LNP-formulated repRNA vaccines.


Asunto(s)
Nanopartículas , ARN , Humanos , Ratones , Animales , Distribución Tisular , ARN/genética , Antígenos , Inmunidad Humoral , Inflamación
8.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37292739

RESUMEN

Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.

9.
Infect Dis Ther ; 12(6): 1605-1624, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37166567

RESUMEN

INTRODUCTION: This randomized, double-blind, placebo-controlled, phase 2a trial was conducted to evaluate the safety and immunogenicity of the ID93 + glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE) vaccine in human immunodeficiency virus (HIV)-negative, previously Bacillus Calmette-Guérin (BCG)-vaccinated, and QuantiFERON-TB-negative healthy adults in South Korea. METHODS: Adults (n = 107) with no signs or symptoms of tuberculosis were randomly assigned to receive three intramuscular injections of 2 µg ID93 + 5 µg GLA-SE, 10 µg ID93 + 5 µg GLA-SE, or 0.9% normal saline placebo on days 0, 28, and 56. For safety assessment, data on solicited adverse events (AEs), unsolicited AEs, serious AEs (SAEs), and special interest AEs were collected. Antigen-specific antibody responses were measured using serum enzyme-linked immunosorbent assay. T-cell immune responses were measured using enzyme-linked immunospot and intracellular cytokine staining. RESULTS: No SAEs, deaths, or AEs leading to treatment discontinuation were found. The solicited local and systemic AEs observed were consistent with those previously reported. Compared with adults administered with the placebo, those administered with three intramuscular vaccine injections exhibited significantly higher antigen-specific antibody levels and Type 1 T-helper cellular immune responses. CONCLUSION: The ID93 + GLA-SE vaccine induced antigen-specific cellular and humoral immune responses, with an acceptable safety profile in previously healthy, BCG-vaccinated, Mycobacterium tuberculosis-uninfected adult healthcare workers. TRIAL REGISTRATION: This clinical trial was retrospectively registered on 16 January 2019 at Clinicaltrials.gov (NCT03806686).

10.
Indian J Dermatol Venereol Leprol ; 89(6): 834-841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37067141

RESUMEN

Background Considering the cross-regulation of Th1 and Th2 responses, we hypothesised that atopic diseases (Th2) inhibit the protective Th1 immune response to Mycobacterium leprae and exacerbates leprosy. Objective In this study, we aimed to evaluate the association between leprosy and atopic diseases. Methods To evaluate the association of atopic diseases with leprosy, we conducted a case-control study that included leprosy patients (n = 333) and their household contacts (n = 93). The questionnaire from the International Study of Asthma and Allergies in Childhood, which is validated in several countries for epidemiological diagnosis of atopic diseases, was applied to determine the occurrence of atopic diseases, allergic rhinitis, asthma, and atopic dermatitis among leprosy patients and the household contacts. Results Considering clinical and epidemiological data, among the leprosy group 51.6% (n = 172) were determined to have at least one atopic disease, while atopy was observed less frequently at 40.86% among household contacts (n = 38). When two or more atopic diseases were assessed, the frequency was significantly higher among the leprosy patients than in the household contacts (21.9% vs. 11.8%; P-value = 0.03). Likewise, the frequency of asthma was significantly higher among leprosy patients (21%) than in the household contacts (10.8%; P-value = 0.02). Thus, our analyses revealed an association of atopic diseases with leprosy, with a significant linear increase in the occurrence of leprosy with an increase in the number of atopic diseases (P-value = 0.01). Limitation Due to the difficulties in recruiting household contacts that have prolonged contact with patients, but are not genetically related to the patient, the household contacts group is smaller than the leprosy patient group. Conclusion The data reveal an association between atopic diseases and leprosy outcomes. This knowledge could improve the treatment of leprosy patients with co-incident atopic diseases.


Asunto(s)
Asma , Dermatitis Atópica , Lepra , Rinitis , Humanos , Dermatitis Atópica/diagnóstico , Rinitis/complicaciones , Estudios de Casos y Controles , Asma/complicaciones , Asma/epidemiología , Lepra/diagnóstico
11.
Vaccines (Basel) ; 11(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679975

RESUMEN

Mycobacterium tuberculosis (M.tb), a bacterial pathogen that causes tuberculosis disease (TB), exerts an extensive burden on global health. The complex nature of M.tb, coupled with different TB disease stages, has made identifying immune correlates of protection challenging and subsequently slowing vaccine candidate progress. In this work, we leveraged two delivery platforms as prophylactic vaccines to assess immunity and subsequent efficacy against low-dose and ultra-low-dose aerosol challenges with M.tb H37Rv in C57BL/6 mice. Our second-generation TB vaccine candidate ID91 was produced as a fusion protein formulated with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion) or as a novel replicating-RNA (repRNA) formulated in a nanostructured lipid carrier. Protein subunit- and RNA-based vaccines preferentially elicit cellular immune responses to different ID91 epitopes. In a single prophylactic immunization screen, both platforms reduced pulmonary bacterial burden compared to the controls. Excitingly, in prime-boost strategies, the groups that received heterologous RNA-prime, protein-boost or combination immunizations demonstrated the greatest reduction in bacterial burden and a unique humoral and cellular immune response profile. These data are the first to report that repRNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing CD4+ and CD8+ T-cell epitopes.

12.
Equine Vet J ; 55(2): 182-193, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35491961

RESUMEN

BACKGROUND: High serum γ-glutamyl-transferase (GGT) activity syndrome in racehorses has been associated with maladaption to exercise. Investigation of affected horses before and immediately after standard exercise may provide critical insight into the syndrome's pathophysiology. OBJECTIVES: To investigate blood biomarker changes in actively competing racehorses with high GGT activity associated with an exercise challenge. STUDY DESIGN: Case-control study. METHODS: High GGT case (age: 2-3 years) and normal GGT control (age: 2-7 years) pairs (3 Thoroughbred, 4 Standardbred pairs) at least 3 months into their training/racing season were included. Horses with a recent history of high GGT activity (≥50 IU/L) without additional biochemical evidence of liver disease were identified by veterinarians. Horses were tested again in the week prior to a planned exercise challenge to confirm persistent increases in GGT activity. Controls from the same stable with similar training/racing intensity and serum GGT activity ≤36 IU/L were matched with each case. Blood samples were obtained immediately before, 15 and 120 min after exercise. Pre-exercise serum samples were analysed for baseline select serum chemistries, selenium and vitamin E concentrations. Cortisol concentration and markers of oxidative status were measured in serum or plasma for all time points. Individual serum bile acid and coenzyme Q10 concentrations, plasma lipid mediator (fatty acids, oxylipids, isoprostanes) concentrations and targeted metabolomics analyses were performed using liquid chromatography-mass spectrometry. Serum viral PCR for equine hepaci- and parvovirus was performed in each animal. RESULTS: Cases had higher baseline concentrations of total glutathione, taurocholic acid, cortisol and cholesterol concentrations and higher or lower concentrations of specific oxylipid and isoprostane mediators, but there were no case-dependent changes after exercise. MAIN LIMITATIONS: Small sample size. CONCLUSIONS: Results indicated that glutathione metabolism was altered in high GGT horses. Enhanced glutathione recycling and mild cholestasis are possible explanations for the observed differences.


Asunto(s)
Hidrocortisona , Condicionamiento Físico Animal , Caballos , Animales , Estudios de Casos y Controles , gamma-Glutamiltransferasa , Condicionamiento Físico Animal/fisiología
13.
Tuberculosis (Edinb) ; 138: 102302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586154

RESUMEN

Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.


Asunto(s)
Mycobacterium tuberculosis , Vacunas de ADN , Animales , Ratones , Linfocitos T CD8-positivos , Mycobacterium avium/metabolismo , Mycobacterium tuberculosis/genética , Vacunación/métodos , Citocinas/metabolismo , Inmunización Secundaria/métodos
15.
Pathogens ; 11(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36365010

RESUMEN

Leishmania parasites cause a variety of discrete clinical diseases that present in regions where their specific sand fly vectors sustain transmission. Clinical and laboratory research indicate the potential of immunization to prevent leishmaniasis and a wide array of vaccine candidates have been proposed. Unfortunately, multiple factors have precluded advancement of more than a few Leishmania targeting vaccines to clinical trial. The recent maturation of RNA vaccines into licensed products in the context of COVID-19 indicates the likelihood of broader use of the technology. Herein, we discuss the potential benefits provided by RNA technology as an approach to address the bottlenecks encountered for Leishmania vaccines. Further, we outline a variety of strategies that could be used to more efficiently evaluate Leishmania vaccine efficacy, including controlled human infection models and initial use in a therapeutic setting, that could prioritize candidates before evaluation in larger, longer and more complicated field trials.

16.
Vaccines (Basel) ; 10(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36298589

RESUMEN

We report the successful closure of Phase I clinical trials, comprising Phases Ia and Ib, of the vaccine candidate against human schistosomiasis: the Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) + glucopyranosyl lipid A in squalene emulsion (GLA-SE). Shown here are the results of Phase Ib, an open, non-placebo-controlled, standardized-dose immunization trial involving 10 healthy 18-49-year-old women. Fifty micrograms of the Sm14 protein plus 10 µg GLA-SE per dose was given intramuscularly thrice at 30-day intervals. Participants were assessed clinically, biochemically, and immunologically for up to 120 days. In preambular experiments involving vaccinated pregnant female rabbits, we did not find any toxicological features in either the offspring or mothers, and the vaccine induced adaptive immunity in the animals. In women, no adverse events were observed, and vaccination induced high titers of anti-Sm14 serum IgG antibody production. Vaccination also elicited robust cytokine responses, with increased TNFα, IFNγ, and IL-2 profiles in all vaccinees on days 90 and 120. The completion of Phase I clinical trials, which were performed to the highest standards set by Good Clinical Research Practice (GCP) standards, and preclinical data in pregnant rabbits enabled the vaccine candidate to proceed to Phase II clinical trials in endemic areas.

17.
Front Microbiol ; 13: 935444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090093

RESUMEN

Mycobacterium tuberculosis (M.tb) has led to approximately 1.3 million deaths globally in 2020 according to the World Health Organization (WHO). More effective treatments are therefore required to prevent the transmission of M.tb. Although Bacille Calmette-Guérin (BCG), a prophylactic vaccine against M.tb, already exists, other vaccines are being developed that could help boost BCG's noted incomplete protection. This includes ID93 + GLA-SE, an adjuvanted protein vaccine which is being tested in Phase 2 clinical trials. The aim of this study was to test new lipid-based adjuvant formulations with ID93 in the context of a therapeutic vaccine, which we hypothesize would act as an adjunct to drug treatment and provide better outcomes, such as survival, than drug treatment alone. The recent success of another adjuvanted recombinant protein vaccine, M72 + AS01E (GlaxoSmithKline Biologicals), which after 3 years provided approximately 50% efficacy against TB pulmonary disease, is paving the way for new and potentially more effective vaccines. We show that based on selected criteria, including survival, T helper 1 cytokine responses, and resident memory T cells in the lung, that a liposomal formulation of GLA with QS-21 (GLA-LSQ) combined with ID93 provided enhanced protection over drug treatment alone.

18.
Virulence ; 13(1): 808-832, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35499090

RESUMEN

Mycobacterium avium complex (MAC) causing pulmonary disease in humanshas emerged worldwide. Thus, effective strategies simultaneously aiming to prevent MAC infection and accelerate therapeutic efficacy are required. To this end, subunit vaccine-induced protection against a well-defined virulent Mycobacterium avium (Mav) isolate was assessed as a preventative and therapeutic modality in murine models. Mav-derived culture filtrate antigen (CFA) was used as a vaccine antigen with glucopyranosyl lipid A stable emulsion (GLA-SE) or GLA-SE plus cyclic-di-GMP (GLA-SE/CDG), and we compared the immunogenicities, protective efficacies and immune correlates. Interestingly, CFA+GLA-SE/CDG immunization induced greater CFA-specific Th1/Th17 responses in both the lung and spleen than among the tested groups. Consequently, protective efficacy was optimally achieved with CFA+GLA-SE/CDG by significantly reducing bacterial loads along with long-lasting maintenance of antigen-specific Th1/Th17 cytokine-producing multifunctional T cell responses and relevant cytokine productions. Thus, we employed this subunit vaccine as an adjunct to antibiotic treatment. However, this vaccine was ineffective in further reducing bacterial loads. Collectively, our study demonstrates that strong Mav CFA-specific Th1/Th17 responses are critical for preventative protection against Mav infection but may be ineffective or even detrimental in an established and progressive chronic disease, indicating that different approaches to combating Mav infection are necessary according to vaccination purposes.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Adyuvantes Inmunológicos/farmacología , Animales , Antibacterianos/uso terapéutico , Enfermedad Crónica , Citocinas , Inmunidad , Ratones , Mycobacterium avium , Células TH1 , Células Th17 , Tuberculosis/microbiología , Vacunas contra la Tuberculosis/farmacología , Vacunación , Vacunas de Subunidad
19.
Front Neurosci ; 16: 851463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573305

RESUMEN

Reason for Performing Study: So far, only transcranial motor evoked potentials (MEP) of the extensor carpi radialis and tibialis cranialis have been documented for diagnostic evaluation in horses. These allow for differentiating whether lesions are located in either the thoraco-lumbar region or in the cervical myelum and/or brain. Transcranial trapezius MEPs further enable to distinguish between spinal and supraspinal located lesions. No normative data are available. It is unclear whether transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) are interchangeable modalities. Objectives: To provide normative data for trapezius MEP parameters in horses for TES and TMS and to discern direct and indirect conduction routes by neurophysiological models that use anatomical geometric characteristics to relate latency times with peripheral (PCV) and central conduction velocities (CCV). Methods: Transcranial electrical stimulation-induced trapezius MEPs were obtained from twelve horses. TES and TMS-MEPs (subgroup 5 horses) were compared intra-individually. Trapezius MEPs were measured bilaterally twice at 5 intensity steps. Motoneurons were localized using nerve conduction models of the cervical and spinal accessory nerves (SAN). Predicted CCVs were verified by multifidus MEP data from two horses referred for neurophysiological assessment. Results: Mean MEP latencies revealed for TES: 13.5 (11.1-16.0)ms and TMS: 19.7 (12-29.5)ms, comprising ∼100% direct routes and for TMS mixed direct/indirect routes of L:23/50; R:14/50. Left/right latency decreases over 10 > 50 V for TES were: -1.4/-1.8 ms and over 10 > 50% for TMS: -1.7/-3.5 ms. Direct route TMS-TES latency differences were 1.88-4.30 ms. 95% MEP amplitudes ranges for TES were: L:0.26-22 mV; R:0.5-15 mV and TMS: L:0.9 - 9.1 mV; R:1.1-7.9 mV. Conclusion: This is the first study to report normative data characterizing TES and TMS induced- trapezius MEPs in horses. The complex trapezius innervation leaves TES as the only reliable stimulation modality. Differences in latency times along the SAN route permit for estimation of the location of active motoneurons, which is of importance for clinical diagnostic purpose. SAN route lengths and latency times are governed by anatomical locations of motoneurons across C2-C5 segments. TES intensity-dependent reductions of trapezius MEP latencies are similar to limb muscles while MEP amplitudes between sides and between TES and TMS are not different. CCVs may reach 180 m/s.

20.
NPJ Vaccines ; 7(1): 45, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459225

RESUMEN

Herpes zoster (HZ) is caused by reactivation of latent varicella-zoster virus (VZV) when VZV-specific cellular immunity is insufficient to control reactivation. Currently, Shingrix, which contains the VZV gE protein and GSK's AS01B adjuvant composed of liposomes formulated with cholesterol, monophosphoryl lipid A (MPL) and QS21, is used for prevention of HZ. However, reactogenicity to Shingrix is common leading to poor patient compliance in receiving one or both shots. Here, we evaluated the immunogenicity of a newly formulated gE protein-based HZ vaccine containing Second-generation Lipid Adjuvant (SLA), a synthetic TLR4 ligand, formulated in an oil-in-water emulsion (SLA-SE) without QS21 (gE/SLA-SE). In VZV-primed mouse models, gE/SLA-SE-induced gE-specific humoral and cellular immune responses at comparable levels to those elicited by Shingrix in young mice, as both gE/SLA-SE and Shingrix induce polyfunctional CD4+ T-cell responses. In aged mice, gE/SLA-SE elicited more robust gE-specific T-cell responses than Shingrix. Furthermore, gE/SLA-SE-induced T-cell responses were sustained until 5 months after immunization. Thus, QS21-free, gE/SLA-SE is a promising candidate for development of gE-based HZ vaccines with high immunogenicity-particularly when targeting an older population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...