Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Heliyon ; 9(4): e15143, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37123891

RESUMEN

Introduction: Artificial intelligence (AI) applications in healthcare and medicine have increased in recent years. To enable access to personal data, Trusted Research Environments (TREs) (otherwise known as Safe Havens) provide safe and secure environments in which researchers can access sensitive personal data and develop AI (in particular machine learning (ML)) models. However, currently few TREs support the training of ML models in part due to a gap in the practical decision-making guidance for TREs in handling model disclosure. Specifically, the training of ML models creates a need to disclose new types of outputs from TREs. Although TREs have clear policies for the disclosure of statistical outputs, the extent to which trained models can leak personal training data once released is not well understood. Background: We review, for a general audience, different types of ML models and their applicability within healthcare. We explain the outputs from training a ML model and how trained ML models can be vulnerable to external attacks to discover personal data encoded within the model. Risks: We present the challenges for disclosure control of trained ML models in the context of training and exporting models from TREs. We provide insights and analyse methods that could be introduced within TREs to mitigate the risk of privacy breaches when disclosing trained models. Discussion: Although specific guidelines and policies exist for statistical disclosure controls in TREs, they do not satisfactorily address these new types of output requests; i.e., trained ML models. There is significant potential for new interdisciplinary research opportunities in developing and adapting policies and tools for safely disclosing ML outputs from TREs.

3.
Clin Epigenetics ; 14(1): 142, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329530

RESUMEN

BACKGROUND: Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascular morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine disorders (endocrine hypertension, EHT), such as Cushing's syndrome (CS), primary aldosteronism (PA), and pheochromocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hypertension could be associated with a specific blood DNA methylation signature, which could be used for disease discrimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with hypertension, either PHT (n = 42) or EHT (n = 213), and at identifying specific discriminating signatures using machine learning approaches. RESULTS: Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered separately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated genes, FKBP5 was identified in the CS group. Using four different machine learning methods-Lasso (Least Absolute Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine-predictive models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hypertension type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 0.83 for predicting PPGL. CONCLUSIONS: The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for each type of endocrine disorder.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Hipertensión , Feocromocitoma , Humanos , Epigenoma , Metilación de ADN , Feocromocitoma/complicaciones , Feocromocitoma/genética , Hipertensión/diagnóstico , Hipertensión/genética , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/complicaciones , Biomarcadores
4.
EBioMedicine ; 84: 104276, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36179553

RESUMEN

BACKGROUND: Arterial hypertension is a major cardiovascular risk factor. Identification of secondary hypertension in its various forms is key to preventing and targeting treatment of cardiovascular complications. Simplified diagnostic tests are urgently required to distinguish primary and secondary hypertension to address the current underdiagnosis of the latter. METHODS: This study uses Machine Learning (ML) to classify subtypes of endocrine hypertension (EHT) in a large cohort of hypertensive patients using multidimensional omics analysis of plasma and urine samples. We measured 409 multi-omics (MOmics) features including plasma miRNAs (PmiRNA: 173), plasma catechol O-methylated metabolites (PMetas: 4), plasma steroids (PSteroids: 16), urinary steroid metabolites (USteroids: 27), and plasma small metabolites (PSmallMB: 189) in primary hypertension (PHT) patients, EHT patients with either primary aldosteronism (PA), pheochromocytoma/functional paraganglioma (PPGL) or Cushing syndrome (CS) and normotensive volunteers (NV). Biomarker discovery involved selection of disease combination, outlier handling, feature reduction, 8 ML classifiers, class balancing and consideration of different age- and sex-based scenarios. Classifications were evaluated using balanced accuracy, sensitivity, specificity, AUC, F1, and Kappa score. FINDINGS: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. For discrimination of EHT (PA + PPGL + CS) vs PHT, the simple logistic classifier achieved 0.96 AUC with 90% sensitivity, and ∼86% specificity, using 37 MOmics features. One PmiRNA (hsa-miR-15a-5p) and two PSmallMB (C9 and PC ae C38:1) features were found to be most discriminating for all disease combinations. Overall, the MOmics-based classifiers were able to provide better classification performance in comparison to mono-omics classifiers. INTERPRETATION: We have developed a ML pipeline to distinguish different EHT subtypes from PHT using multi-omics data. This innovative approach to stratification is an advancement towards the development of a diagnostic tool for EHT patients, significantly increasing testing throughput and accelerating administration of appropriate treatment. FUNDING: European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 633983, Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE (to Z.E. and F.B.), and Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1).


Asunto(s)
Hipertensión , MicroARNs , Biomarcadores , Catecoles , Humanos , Hipertensión/diagnóstico , Aprendizaje Automático , Estudios Retrospectivos
5.
Metabolites ; 12(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36005627

RESUMEN

Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.

6.
Metabolites ; 12(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893246

RESUMEN

Despite considerable morbidity and mortality, numerous cases of endocrine hypertension (EHT) forms, including primary aldosteronism (PA), pheochromocytoma and functional paraganglioma (PPGL), and Cushing's syndrome (CS), remain undetected. We aimed to establish signatures for the different forms of EHT, investigate potentially confounding effects and establish unbiased disease biomarkers. Plasma samples were obtained from 13 biobanks across seven countries and analyzed using untargeted NMR metabolomics. We compared unstratified samples of 106 PHT patients to 231 EHT patients, including 104 PA, 94 PPGL and 33 CS patients. Spectra were subjected to a multivariate statistical comparison of PHT to EHT forms and the associated signatures were obtained. Three approaches were applied to investigate and correct confounding effects. Though we found signatures that could separate PHT from EHT forms, there were also key similarities with the signatures of sample center of origin and sample age. The study design restricted the applicability of the corrections employed. With the samples that were available, no biomarkers for PHT vs. EHT could be identified. The complexity of the confounding effects, evidenced by their robustness to correction approaches, highlighted the need for a consensus on how to deal with variabilities probably attributed to preanalytical factors in retrospective, multicenter metabolomics studies.

7.
Biotechnol Adv ; 49: 107739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33794304

RESUMEN

With the development of modern high-throughput omic measurement platforms, it has become essential for biomedical studies to undertake an integrative (combined) approach to fully utilise these data to gain insights into biological systems. Data from various omics sources such as genetics, proteomics, and metabolomics can be integrated to unravel the intricate working of systems biology using machine learning-based predictive algorithms. Machine learning methods offer novel techniques to integrate and analyse the various omics data enabling the discovery of new biomarkers. These biomarkers have the potential to help in accurate disease prediction, patient stratification and delivery of precision medicine. This review paper explores different integrative machine learning methods which have been used to provide an in-depth understanding of biological systems during normal physiological functioning and in the presence of a disease. It provides insight and recommendations for interdisciplinary professionals who envisage employing machine learning skills in multi-omics studies.


Asunto(s)
Aprendizaje Automático , Biología de Sistemas , Algoritmos , Humanos , Metabolómica , Proteómica
8.
J Clin Endocrinol Metab ; 106(4): 1111-1128, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33382876

RESUMEN

CONTEXT: Identification of patients with endocrine forms of hypertension (EHT) (primary hyperaldosteronism [PA], pheochromocytoma/paraganglioma [PPGL], and Cushing syndrome [CS]) provides the basis to implement individualized therapeutic strategies. Targeted metabolomics (TM) have revealed promising results in profiling cardiovascular diseases and endocrine conditions associated with hypertension. OBJECTIVE: Use TM to identify distinct metabolic patterns between primary hypertension (PHT) and EHT and test its discriminating ability. METHODS: Retrospective analyses of PHT and EHT patients from a European multicenter study (ENSAT-HT). TM was performed on stored blood samples using liquid chromatography mass spectrometry. To identify discriminating metabolites a "classical approach" (CA) (performing a series of univariate and multivariate analyses) and a "machine learning approach" (MLA) (using random forest) were used.The study included 282 adult patients (52% female; mean age 49 years) with proven PHT (n = 59) and EHT (n = 223 with 40 CS, 107 PA, and 76 PPGL), respectively. RESULTS: From 155 metabolites eligible for statistical analyses, 31 were identified discriminating between PHT and EHT using the CA and 27 using the MLA, of which 16 metabolites (C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, glutamate, ornithine, spermidine, lysoPCaC16:0, lysoPCaC20:4, lysoPCaC24:0, PCaeC42:0, SM C18:1, SM C20:2) were found by both approaches. The receiver operating characteristic curve built on the top 15 metabolites from the CA provided an area under the curve (AUC) of 0.86, which was similar to the performance of the 15 metabolites from MLA (AUC 0.83). CONCLUSION: TM identifies distinct metabolic pattern between PHT and EHT providing promising discriminating performance.


Asunto(s)
Enfermedades del Sistema Endocrino/diagnóstico , Hipertensión/diagnóstico , Metabolómica/métodos , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Adulto , Anciano , Síndrome de Cushing/complicaciones , Síndrome de Cushing/diagnóstico , Diagnóstico Diferencial , Técnicas de Diagnóstico Endocrino , Enfermedades del Sistema Endocrino/etiología , Hipertensión Esencial/diagnóstico , Europa (Continente) , Femenino , Humanos , Hiperaldosteronismo/diagnóstico , Hipertensión/clasificación , Hipertensión/etiología , Masculino , Persona de Mediana Edad , Paraganglioma/complicaciones , Paraganglioma/diagnóstico , Feocromocitoma/complicaciones , Feocromocitoma/diagnóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...