Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 22(17): 4391-404, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27012811

RESUMEN

PURPOSE: Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. EXPERIMENTAL DESIGN: We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. RESULTS: An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. CONCLUSIONS: Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Neuroblastoma/etiología , Neuroblastoma/patología , Poliaminas/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Celecoxib/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Eflornitina/farmacología , Genes myc , Homeostasis/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Poliaminas/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Nucl Med ; 55(3): 515-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24491409

RESUMEN

UNLABELLED: We compared the imaging characteristics and hypoxia selectivity of 4 hypoxia PET radiotracers ((18)F-fluoromisonidazole [(18)F-FMISO], (18)F-flortanidazole [(18)F-HX4], (18)F-fluoroazomycin arabinoside [(18)F-FAZA], and (64)Cu-diacetyl-bis(N4-methylsemicarbazone) [(64)Cu-ATSM]) in a single murine xenograft tumor model condition using small-animal PET imaging and combined ex vivo autoradiography and fluorescence immunohistochemistry. METHODS: Nude mice bearing SQ20b xenograft tumors were administered 1 of 4 hypoxia PET tracers and images acquired 80-90 min after injection. Frozen sections from excised tumors were then evaluated for tracer distribution using digital autoradiography and compared with histologic markers of tumor hypoxia (pimonidazole, carbonic anydrase 9 [CA9]) and vascular perfusion (Hoechst 33342). RESULTS: The highest tumor uptake was observed with (64)Cu-ATSM (maximum standardized uptake values [SUV(max)], 1.26 ± 0.13) and the lowest with (18)F-FAZA (SUVmax, 0.41 ± 0.24). (18)F-FMISO and (18)F-HX4 had similar intermediate tumor uptake (SUV(max), 0.76 ± 0.38 and 0.65 ± 0.19, respectively). Digital autoradiographs of hypoxia tracer distribution were compared pixel by pixel with images of immunohistochemistry stains. The fluorinated nitroimidazoles all showed radiotracer uptake increasing with pimonidazole and CA9 staining. (64)Cu-ATSM showed the opposite pattern, with highest radiotracer uptake observed in regions with the lowest pimonidazole and CA9 staining. CONCLUSION: The fluorinated nitroimidazoles showed similar tumor distributions when compared with immunohistochemistry markers of hypoxia. Variations in tumor standardized uptake value and normal tissue distribution may determine the most appropriate clinical setting for each tracer. (64)Cu-ATSM showed the highest tumor accumulation and little renal clearance. However, the lack of correlation between (64)Cu-ATSM distribution and immunohistochemistry hypoxia markers casts some doubt on the hypoxia selectivity of (64)Cu-ATSM.


Asunto(s)
Radioisótopos de Cobre , Nitroimidazoles/metabolismo , Compuestos Organometálicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Tiosemicarbazonas/metabolismo , Animales , Autorradiografía , Hipoxia de la Célula , Línea Celular Tumoral , Complejos de Coordinación , Humanos , Ratones , Trazadores Radiactivos
3.
NMR Biomed ; 26(2): 151-63, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22777834

RESUMEN

Cediranib is a small-molecule pan-vascular endothelial growth factor receptor inhibitor. The tumor response to short-term cediranib treatment was studied using dynamic contrast-enhanced and diffusion-weighted MRI at 7 T, as well as (18) F-fluoromisonidazole positron emission tomography and histological markers. Rats bearing subcutaneous HT29 human colorectal tumors were imaged at baseline; they then received three doses of cediranib (3 mg/kg per dose daily) or vehicle (dosed daily), with follow-up imaging performed 2 h after the final cediranib or vehicle dose. Tumors were excised and evaluated for the perfusion marker Hoechst 33342, the endothelial cell marker CD31, smooth muscle actin, intercapillary distance and tumor necrosis. Dynamic contrast-enhanced MRI-derived parameters decreased significantly in cediranib-treated tumors relative to pretreatment values [the muscle-normalized initial area under the gadolinium concentration curve decreased by 48% (p=0.002), the enhancing fraction by 43% (p=0.003) and K(trans) by 57% (p=0.003)], but remained unchanged in controls. No change between the pre- and post-treatment tumor apparent diffusion coefficients in either the cediranib- or vehicle-treated group was observed over the course of this study. The (18) F-fluoromisonidazole mean standardized uptake value decreased by 33% (p=0.008) in the cediranib group, but showed no significant change in the control group. Histological analysis showed that the number of CD31-positive vessels (59 per mm(2) ), the fraction of smooth muscle actin-positive vessels (80-87%) and the intercapillary distance (0.17 mm) were similar in cediranib- and vehicle-treated groups. The fraction of perfused blood vessels in cediranib-treated tumors (81 ± 7%) was lower than that in vehicle controls (91 ± 3%, p=0.02). The necrotic fraction was slightly higher in cediranib-treated rats (34 ± 12%) than in controls (26 ± 10%, p=0.23). These findings suggest that short-term treatment with cediranib causes a decrease in tumor perfusion/permeability across the tumor cross-section, but changes in vascular morphology, vessel density or tumor cellularity are not manifested at this early time point.


Asunto(s)
Fluorodesoxiglucosa F18 , Gadolinio DTPA , Neoplasias Experimentales/diagnóstico , Neoplasias Experimentales/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Quinazolinas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Medios de Contraste , Células HT29 , Humanos , Radiofármacos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Int J Radiat Oncol Biol Phys ; 84(3): e393-9, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22727887

RESUMEN

PURPOSE: The behavior of copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) in hypoxic tumors was examined through a combination of in vivo dynamic positron emission tomography (PET) and ex vivo autoradiographic and histologic evaluation using a xenograft model of head-and-neck squamous cell carcinoma. METHODS AND MATERIALS: (64)Cu-ATSM was administered during dynamic PET imaging, and temporal changes in (64)Cu-ATSM distribution within tumors were evaluated for at least 1 hour and up to 18 hours. Animals were sacrificed at either 1 hour (cohort A) or after 18 hours (cohort B) postinjection of radiotracer and autoradiography performed. Ex vivo analysis of microenvironment subregions was conducted by immunohistochemical staining for markers of hypoxia (pimonidazole hydrochloride) and blood flow (Hoechst-33342). RESULTS: Kinetic analysis revealed rapid uptake of radiotracer by tumors. The net influx (K(i)) constant was 12-fold that of muscle, whereas the distribution volume (V(d)) was 5-fold. PET images showed large tumor-to-muscle ratios, which continually increased over the entire 18-hour course of imaging. However, no spatial changes in (64)Cu-ATSM distribution occurred in PET imaging at 20 minutes postinjection. Microscopic intratumoral distribution of (64)Cu-ATSM and pimonidazole were not correlated at 1 hour or after 18 hours postinjection, nor was (64)Cu-ATSM and Hoechst-33342. CONCLUSIONS: The oxygen partial pressures at which (64)Cu-ATSM and pimonidazole are reduced and bound in cells are theorized to be distinct and separable. However, this study demonstrated that microscopic distributions of these tracers within tumors are independent. Researchers have shown (64)Cu-ATSM uptake to be specific to malignant expression, and this work has also demonstrated clear tumor targeting by the radiotracer.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Hipoxia de la Célula , Neoplasias de Cabeza y Cuello/metabolismo , Compuestos Organometálicos/farmacocinética , Tiosemicarbazonas/farmacocinética , Animales , Autorradiografía , Biomarcadores/metabolismo , Carcinoma de Células Escamosas/diagnóstico por imagen , Complejos de Coordinación , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Inmunohistoquímica , Músculos/diagnóstico por imagen , Músculos/metabolismo , Nitroimidazoles/metabolismo , Presión Parcial , Cintigrafía , Ratas , Ratas Desnudas , Distribución Tisular , Trasplante Heterólogo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA