Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 830: 154671, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35331772

RESUMEN

Nitrate pollution and eutrophication are of increasing concern in agriculturally dominated regions, and with projected future climate changes, these issues are expected to worsen for both surface and groundwater. Changes in land use and management have the potential to mitigate some of these concerns. However, to what extent these changes will interact is unknown, and are associated with significant uncertainty. Here, we estimate nitrate fluxes and contributions of major uncertainty sources (variance decomposition analysis) affecting nitrate leaching from the root zone and river load from groundwater sources for an agricultural catchment in Denmark under future changes (2080-2099) in climate (four climate models) and land use (four land use scenarios). To investigate the uncertainty from impact model choice, two different agro-hydrological models (SWAT and DAISY-MIKE SHE) both traditionally used for nitrate impact assessments are used for projecting these effects. On average, nitrate leaching from the root zone increased by 55%-123% due to different climate models, while the impact of land use scenarios showed changes between -9% and 88%, with similar projections for river loads, while the worst-case combination of the three factors yielded a fivefold increase in nitrate transport. Thus, in the future, major land use changes will be necessary to mitigate nitrate pollution likely in combination with other measures such as advanced management and farming technologies and differentiated regulation. The two agro-hydrological models showed substantially different reaction patterns and magnitude of nitrate fluxes, and while the largest uncertainty source was the land use scenarios for both models, DAISY-MIKE SHE was to a higher degree affected by climate model choice. The dominating uncertainty source was found to be the agro-hydrological model; however, both uncertainties related to land use scenario and climate model were important, thus highlighting the need to include all influential factors in future nitrate flux impact studies.


Asunto(s)
Cambio Climático , Nitratos , Hidrología , Nitratos/análisis , Óxidos de Nitrógeno , Ríos/química , Incertidumbre
3.
Ambio ; 48(11): 1325-1336, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31542889

RESUMEN

The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.


Asunto(s)
Cambio Climático , Nutrientes , Países Bálticos , Eutrofización , Océanos y Mares , Fósforo , Factores Socioeconómicos
4.
Ambio ; 48(11): 1240-1251, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31473975

RESUMEN

To assess the contribution of reactive nitrogen from groundwater to surface waters, we need more knowledge on how reactive nitrogen behaves in the glacial till systems underlying many agricultural fields. Groundwater sampled from suction cups and piezometers placed in the glacial till underlying a winter wheat field shows the nitrate concentration in water leaching to deeper than 2 m below ground surface (mbg) is ~ 60 mg L-1. Within 5 mbg, all of the nitrate is removed and this appears to take place within a redox zone rather than at a sharp redox front. Ammonium released from the till is negligible. A 2D dataset reveals that the depth to the redox zone undulates between 3 and 5 mbg, perhaps a result of local variations in infiltration. It appears that the nitrate is generally reduced by the oxidation of pyrite and locally by organic matter in lenses within the till.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Arcilla , Nitratos , Nitrógeno
5.
Ambio ; 48(11): 1278-1289, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31187428

RESUMEN

The Baltic Sea Action Plan and the EU Water Framework Directive both require substantial additional reductions of nutrient loads (N and P) to the marine environment. Focusing on nitrogen, we present a widely applicable concept for spatially differentiated regulation, exploiting the large spatial variations in the natural removal of nitrate in groundwater and surface water. By targeting mitigation measures towards areas where nature's own capacity for removal is low, spatially differentiated regulation can be more cost-effective than the traditional uniform regulation. We present a methodology for upscaling local modelling results on targeted measures at field scale to Baltic Sea drainage basin scale. The paper assesses the potential gain and discusses key challenges related to implementation of spatially differentiated regulation, including the need for more scientific knowledge, handling of uncertainties, practical constraints related to agricultural practice and introduction of co-governance regimes.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agricultura , Países Bálticos , Nitrógeno
6.
Sci Adv ; 4(5): eaar8195, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750199

RESUMEN

Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.


Asunto(s)
Ecosistema , Océanos y Mares , Países Bálticos , Cambio Climático , Economía , Geografía , Biología Marina , Modelos Teóricos
7.
Sci Total Environ ; 468-469: 1278-88, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953482

RESUMEN

In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30-50 m and 2m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the predictions of the different models.


Asunto(s)
Política Ambiental/legislación & jurisprudencia , Fenómenos Geológicos , Modelos Teóricos , Nitratos/análisis , Ríos/química , Movimientos del Agua , Contaminación Química del Agua/prevención & control , Dinamarca , Predicción/métodos , Tecnología de Sensores Remotos/métodos , Incertidumbre , Contaminación Química del Agua/legislación & jurisprudencia
8.
J Environ Qual ; 43(1): 86-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25602543

RESUMEN

The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts.

9.
Ground Water ; 48(5): 633-48, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19788560

RESUMEN

Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.


Asunto(s)
Modelos Teóricos , Agua , Dinamarca , Monitoreo del Ambiente
10.
J Contam Hydrol ; 104(1-4): 137-52, 2009 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-18926594

RESUMEN

This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.


Asunto(s)
Silicatos de Aluminio , Movimientos del Agua , Calibración , Arcilla , Microscopía Electrónica de Rastreo , Modelos Teóricos , Porosidad , Sensibilidad y Especificidad , Soluciones
11.
J Environ Qual ; 37(2): 448-58, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18268308

RESUMEN

The study of mechanisms controlling preferential flow and transport in variably saturated fractured clayey till is often hindered by insufficient spatial resolution or unknown measuring volume. With the objective to study these mechanisms while circumventing the obstacles, tracer experiments with two fluorescent tracers Acid Yellow 7 (AY7) and Sulforhodamine B (SB) were performed at three different rain events for a fall and a summer season. Irrigated areas were excavated down to depths of 2.8 m and the movement of both tracers in the exposed profiles was delineated simultaneously by high spatial resolution apparent concentration maps (pixel approximately 1 mm(2)) obtained with an imaging device. The device consists of a light source and a CCD camera, both equipped with tracer-specific-filters for fluorescent light. The fluorescence images were corrected for nonuniform lighting, changing surface roughness, and varying optical properties of the soil profile. The resulting two-dimensional apparent concentration distribution profiles of the tracers showed that: (i) relative low water content in the upper 10 cm of the irrigated till in summer had a pronounced retardation effect on the AY7-migration and no effect on the SB-migration; (ii) the dead-end biopores were not activated in the fall season; (iii) only 3D fracture-plans connected to hydraulically active 1D-biopores contributed to the leaching; (iv) the tracer migration primary followed macropores during both seasons, though AY7 also followed a topsoil piston transport in summer; (v) the highest tracer pixel apparent concentrations were often found in macropores and most pronounced in the summer season; and (vi) 3D-dilution in fractures seems to play a dominating role in AY7-migration in the fall season.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/análisis , Rodaminas/análisis , Movimientos del Agua , Silicatos de Aluminio , Arcilla , Lluvia
12.
J Environ Monit ; 9(9): 931-42, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17726553

RESUMEN

There is much to gain in joining monitoring and modelling efforts, especially in the present process of implementing the European Water Framework Directive and in the coming implementation of the Groundwater Directive. Nevertheless, present practises in the water management world suggest that most often models are not considered an option when monitoring obligations in the WFD are solved. The present paper analyses the constraints, such as perceived insufficiency of data for modelling, lack of explicit requirement for modelling in the WFD and its associated technical guidance documents, lack of awareness about what models can do and lack of confidence in models by water managers and policy makers. The findings have mainly emerged from a series of Harmoni-CA workshops aiming at bringing the monitoring and modelling communities together for a discussion of benefits and constraints in the joint use of monitoring and modelling. The workshops were attended by scientists, water managers, policy makers, stakeholders and consultants. The overall conclusion is that modelling can significantly improve the benefits of monitoring data; by quality assurance of data, interpolation and extrapolation in space and time, development of process understanding (conceptual models), and the assessment of impacts of pressures and effects of programmes of measures.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Químicos , Unión Europea , Contaminación del Agua/análisis , Contaminación del Agua/legislación & jurisprudencia , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...