Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(33): 14687-14697, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115966

RESUMEN

As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential (Eh). We observed that topography influences groundwater Eh that is higher in uplands than in wetlands; however, the high variability within TAI zones challenged the establishment of distinct redox zonation. Declining water levels generally decreased Eh, but most locations exhibited significant Eh variability, which is associated with rare instances of short-term water level fluctuations, introducing oxygen. The Eh-oxygen relationship showed distinct hysteresis patterns, reflecting redox poising capacity at higher Eh, maintaining more oxidizing states longer than the dissolved oxygen presence. Surprisingly, we observed more frequent oxidizing states in transitional areas and wetlands than in uplands. We infer that occasional oxygen entering specific wetland-upland boundaries acts as critical biogeochemical control points. High-resolution data can capture such rare yet significant biogeochemical instances, supporting redox-informed models and advancing the predictability of climate change feedback.


Asunto(s)
Agua Subterránea , Oxidación-Reducción , Humedales , Agua Subterránea/química
2.
Sci Total Environ ; 729: 138443, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32498151

RESUMEN

Urban surface runoff from storms impacts the water quality dynamics of downstream ecosystems. While these effects are well-documented in mesic regions, they are not well constrained for arid watersheds, which sustain longer dry periods, receive intense but short-lived storms, and where stormwater drainage networks are generally isolated from sewage systems. We used a network of high-frequency in situ water quality sensors located along the Middle Rio Grande to determine surface runoff origins during storms and track rapid changes in physical, chemical, and biological components of water quality. Specific conductivity (SpCond) patterns were a reliable indicator of source, distinguishing between runoff events originating primarily in urban (SpCond sags) or non-urban (SpCond spikes) catchments. Urban events were characterized by high fluorescent dissolved organic matter (fDOM), low dissolved oxygen (including short-lived hypoxia <2 mg/L), smaller increases in turbidity and varied pH response. In contrast, non-urban events showed large turbidity spikes, smaller dissolved oxygen sags, and consistent pH sags. Principal component analysis distinguished urban and non-urban events by dividing physical and biogeochemical water quality parameters, and modeling of DO along the same reach demonstrated consistently higher oxygen demand for an urban event compared to a non-urban event. Based on our analysis, urban runoff poses more potential ecological harm, while non-urban runoff poses a larger problem for drinking water treatment. The comparison of our results to other reports of urban stormwater quality suggest that water quality responses to storm events in urban landscapes are consistent across a range of regional climates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...