Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Sports Med ; 52(4): 1075-1087, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38419462

RESUMEN

BACKGROUND: Bioengineered cartilage is a developing therapeutic to repair cartilage defects. The matrix must be rich in collagen type II and aggrecan and mechanically competent, withstanding compressive and shearing loads. Biomechanical properties in native articular cartilage depend on the zonal architecture consisting of 3 zones: superficial, middle, and deep. The superficial zone chondrocytes produce lubricating proteoglycan-4, whereas the deep zone chondrocytes produce collagen type X, which allows for integration into the subchondral bone. Zonal and chondrogenic expression is lost after cell number expansion. Current cell-based therapies have limited capacity to regenerate the zonal structure of native cartilage. HYPOTHESIS: Both passaged superficial and deep zone chondrocytes at high density can form bioengineered cartilage that is rich in collagen type II and aggrecan; however, only passaged superficial zone-derived chondrocytes will express superficial zone-specific proteoglycan-4, and only passaged deep zone-derived chondrocytes will express deep zone-specific collagen type X. STUDY DESIGN: Controlled laboratory study. METHODS: Superficial and deep zone chondrocytes were isolated from bovine joints, and zonal subpopulations were separately expanded in 2-dimensional culture. At passage 2, superficial and deep zone chondrocytes were seeded, separately, in scaffold-free 3-dimensional culture within agarose wells and cultured in redifferentiation media. RESULTS: Monolayer expansion resulted in loss of expression for proteoglycan-4 and collagen type X in passaged superficial and deep zone chondrocytes, respectively. By passage 2, superficial and deep zone chondrocytes had similar expression for dedifferentiated molecules collagen type I and tenascin C. Redifferentiation of both superficial and deep zone chondrocytes led to the expression of collagen type II and aggrecan in both passaged chondrocyte populations. However, only redifferentiated deep zone chondrocytes expressed collagen type X, and only redifferentiated superficial zone chondrocytes expressed and secreted proteoglycan-4. Additionally, redifferentiated deep zone chondrocytes produced a thicker and more robust tissue compared with superficial zone chondrocytes. CONCLUSION: The recapitulation of the primary phenotype from passaged zonal chondrocytes introduces a novel method of functional bioengineering of cartilage that resembles the zone-specific biological properties of native cartilage. CLINICAL RELEVANCE: The recapitulation of the primary phenotype in zonal chondrocytes could be a possible method to tailor bioengineered cartilage to have zone-specific expression.


Asunto(s)
Cartílago Articular , Condrocitos , Humanos , Animales , Bovinos , Condrocitos/metabolismo , Agrecanos/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Diferenciación Celular , Células Cultivadas , Ingeniería de Tejidos/métodos
2.
NPJ Regen Med ; 7(1): 32, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750773

RESUMEN

The wound healing response is one of most primitive and conserved physiological responses in the animal kingdom, as restoring tissue integrity/homeostasis can be the difference between life and death. Wound healing in mammals is mediated by immune cells and inflammatory signaling molecules that regulate tissue resident cells, including local progenitor cells, to mediate closure of the wound through formation of a scar. Proteoglycan 4 (PRG4), a protein found throughout the animal kingdom from fish to elephants, is best known as a glycoprotein that reduces friction between articulating surfaces (e.g. cartilage). Previously, PRG4 was also shown to regulate the inflammatory and fibrotic response. Based on this, we asked whether PRG4 plays a role in the wound healing response. Using an ear wound model, topical application of exogenous recombinant human (rh)PRG4 hastened wound closure and enhanced tissue regeneration. Our results also suggest that rhPRG4 may impact the fibrotic response, angiogenesis/blood flow to the injury site, macrophage inflammatory dynamics, recruitment of immune and increased proliferation of adult mesenchymal progenitor cells (MPCs) and promoting chondrogenic differentiation of MPCs to form the auricular cartilage scaffold of the injured ear. These results suggest that PRG4 has the potential to suppress scar formation while enhancing connective tissue regeneration post-injury by modulating aspects of each wound healing stage (blood clotting, inflammation, tissue generation and tissue remodeling). Therefore, we propose that rhPRG4 may represent a potential therapy to mitigate scar and improve wound healing.

3.
Connect Tissue Res ; 62(4): 369-380, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32306780

RESUMEN

Purpose: In experimental models of equine joint-injury and osteoarthritis synovial fluid (SF) composition (proteoglycan-4, hyaluronan) can vary, along with changes to SF mechanical function (lubrication, viscosity). The study hypotheses were a) clinical equine joint-injury and disease results in altered SF composition and diminished mechanical function, and b) serum composition (proteoglycan-4 or hyaluronan) changes concurrently. The objectives were to characterize composition (proteoglycan-4, hyaluronan), and function of SF and serum from normal horses compared to clinical groups: osteoarthritis, acute-joint-injury, and osteochondrosis.Materials and Methods: Equine samples of SF (from various joints) and blood were collected at the point-of-care. Proteoglycan-4 concentrations were measured by amplified-luminescence-proximity-assay and enzyme-linked-immunosorbent-assay in SF and serum, respectively. Molecular-weight of hyaluronan was characterized by agarose-gel-electrophoresis, and concentrations were measured by enzyme-linked-immunosorbent-assay kit. Biomechanical function of SF was characterized by an in vitro cartilage-on-cartilage friction test, and viscosity test.Results: SF proteoglycan-4 concentration increased in acute-joint-injury (1185 ± 276 versus normal 205 ± 106 µg/mL, µ± SEM, p < 0.01), with increased percentage of lower molecular-weight hyaluronan in acute-joint-injury and osteochondrosis. SF and serum proteoglycan-4 concentrations were correlated in normal horses (r2 = 0.85, p < 0.05), but not in clinical groups. Cartilage-lubricating ability was unchanged, although steady-shear viscosity of acute-joint-injury SF decreased from normal.Conclusion: Composition of SF from cases of equine acute-joint-injury changed; both proteoglycan-4 concentration and hyaluronan molecular-weight were altered, with decreased SF viscosity, but no associated changes to serum. Serum proteoglycan-4 and hyaluronan concentrations alone may not be useful biomarkers for equine joint-injury or disease.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteocondrosis , Animales , Caballos , Ácido Hialurónico , Inmunoadsorbentes , Lubrificación , Osteoartritis/veterinaria , Proteoglicanos , Líquido Sinovial , Viscosidad
4.
J Biol Chem ; 295(47): 16023-16036, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32928962

RESUMEN

The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Osteoartritis/metabolismo , Proteoglicanos/metabolismo , Membrana Sinovial/metabolismo , Adulto , Anciano , Animales , Proteínas Sanguíneas/genética , Células CHO , Cricetulus , Femenino , Galectinas/genética , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/genética , Osteoartritis/patología , Proteoglicanos/genética , Membrana Sinovial/patología
5.
Front Vet Sci ; 7: 599287, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392293

RESUMEN

Objective: Local biological and biomechanical-stimuli modulate proteoglycan-4 secretion within synovial joints. For the horse, changes to proteoglycan-4 concentration and function are notable in acute joint injury and osteoarthritis. Proteoglycan-4 (also known as Lubricin) is present in the blood, however the effect of exercise on equine serum levels is unknown. The overall objective of this study was, therefore, to investigate the effect of intense exercise on serum proteoglycan-4 in thoroughbred horses. Methods: Samples of blood were taken from thoroughbreds (n = 12) during a chuckwagon racing event (Alberta, Canada). The chuckwagon race is a sprint racing event where teams of horses pull a combined 1,325 lbs (601 kg) of wagon and driver around a 5/8th mile (1 km) of dirt track, racing at full gallop to the finish. Blood samples were collected 30-min before the race start, and several timepoints post-race: 5-min, 90-min, 3-h, 12-h, and 23-h. Proteoglycan-4 concentrations in serum were quantified by enzyme-linked-immunosorbent-assay using recombinant-human proteoglycan-4 standards and anti-proteoglycan-4 mAb 9G3. The molecular weight of immunoreactive proteoglycan-4 in serum was assessed by western blot. Results: Proteoglyan-4 in serum demonstrated the expected high MW immunoreactivity to mAb 9G3, consistent with that of full length PRG4. Serum proteoglycan-4 decreased five-minutes post-race from baseline concentration (0.815 ± 0.175 to 0.466 ± 0.090 µg/mL, µ ± SEM, p < 0.01). Conclusions: The concentration of serum proteoglycan-4 in horses decreased significantly five min post-exercise. A potential explanation for this finding could be increased proteoglycan-4 clearance from the circulation. Further investigations could extend to complete the detailed characterization of proteoglycan-4 structure and its potential function within the blood as it relates to joint health and exercise.

6.
PLoS One ; 14(7): e0219697, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31361756

RESUMEN

Metastasis is the major cause of cancer-related morbidity and mortality. The ability of cancer cells to become invasive and migratory contribute significantly to metastatic growth, which necessitates the identification of novel anti-migratory and anti-invasive therapeutic approaches. Proteoglycan 4 (PRG4), a mucin-like glycoprotein, contributes to joint synovial homeostasis through its friction-reducing and anti-adhesive properties. Adhesion to surrounding extracellular matrix (ECM) components is critical for cancer cells to invade the ECM and eventually become metastatic, raising the question whether PRG4 has an anti-invasive effect on cancer cells. Here, we report that a full-length recombinant human PRG4 (rhPRG4) suppresses the ability of the secreted protein transforming growth factor beta (TGFß) to induce phenotypic disruption of three-dimensional human breast cancer cell-derived organoids by reducing ligand-induced cell invasion. In mechanistic studies, we find that rhPRG4 suppresses TGFß-induced invasiveness of cancer cells by inhibiting the downstream hyaluronan (HA)-cell surface cluster of differentiation 44 (CD44) signalling axis. Furthermore, we find that rhPRG4 represses TGFß-dependent increase in the protein abundance of CD44 and of the enzyme HAS2, which is involved in HA biosynthesis. It is widely accepted that TGFß has both tumor suppressing and tumor promoting roles in cancer. The novel finding that rhPRG4 opposes HAS2 and CD44 induction by TGFß has implications for downregulating the tumor promoting roles, while maintaining the tumor suppressive aspects of TGFß actions. Finally, these findings point to rhPRG4's potential clinical utility as a therapeutic treatment for invasive and metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Proteoglicanos/metabolismo , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Peso Molecular , Invasividad Neoplásica , Organoides/efectos de los fármacos , Organoides/patología , Proteínas Recombinantes/farmacología , Proteínas Smad/metabolismo
7.
BMC Musculoskelet Disord ; 20(1): 93, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808331

RESUMEN

BACKGROUND: The objective of this study was to use confocal fluorescence recovery after photobleaching (FRAP) to examine the specific and dose-dependent effect of proteoglycan 4 (PRG4) on hyaluronan (HA) solutions of different molecular weight; and assess the effect of reduction and alkylation (R/A) of PRG4 on its effects on HA solutions. METHODS: Confocal FRAP was used to determine the diffusion coefficient of fluorescein isothiocyanate (FITC)-dextran tracer (Dt) through 1500 kDa and 500 kDa HA solutions (0-3.3 mg/ml) ± PRG4 or a control protein, bovine serum albumin (BSA), at physiological (450 µg/ml) or pathophysiological (45 µg/ml) concentrations. The effect of PRG4 or R/A PRG4 on 1500 kDa HA solutions was also investigated. Empirical constants obtained from fitting data to the universal scaling equation were used to calculate the average distribution of apparent mesh sizes. RESULTS: PRG4 at both 45 and 450 µg/ml slowed the diffusion of the FITC-dextran tracer for all concentrations of HA and caused a decrease in the apparent mesh size within the HA solution. This effect was specific to PRG4, not observed with BSA, but not dependent on its tertiary/quaternary structure as the effect remained after R/A of PRG4. CONCLUSIONS: These results demonstrate that PRG4 can significantly alter the solution properties of HA; PRG4 essentially reduced the permeability of the HA network. This effect may be due to PRG4 entangling HA molecules through binding and/or HA crowding PRG4 molecules into a self-assembled network. Collectively these findings contribute to the understanding of PRG4 and HA interaction(s) in solution and therefore the function of SF in diarthroidal joints.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Microscopía Confocal/métodos , Soluciones Farmacéuticas/metabolismo , Soluciones Farmacéuticas/farmacología
8.
J Thorac Cardiovasc Surg ; 156(4): 1598-1608.e1, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859675

RESUMEN

OBJECTIVE: Intrapericardial fibrous adhesions increase the risk of sternal reentry. Proteoglycan 4/lubricin (PRG4) is a mucin-like glycoprotein that lubricates tissue compartments and prevents inflammation. We characterized PRG4 expression in human pericardium and examined its effects in vitro on human cardiac myofibroblast fibrotic activity and in vivo as a measure of its therapeutic potential to prevent adhesions. METHODS: Full-length PRG4 expression was determined using Western blot analysis and amplified luminescent proximity homogeneous assay in human pericardial tissues obtained at cardiotomy. The in vitro effects of PRG4 were investigated on human cardiac myofibroblasts for cell adhesion, collagen gel contraction, and cell-mediated extracellular matrix remodeling. The influence of PRG4 on pericardial homeostasis was determined in a chronic porcine animal model. RESULTS: PRG4 is expressed in human pericardial fluid and colocalized with pericardial mesothelial cells. Recombinant human PRG4 prevented human cardiac myofibroblast attachment and reduced myofibroblast activity assessed using collagen gel contraction assay (64.6% ± 8.1% vs 47.1% ± 6.8%; P = .02). Using a microgel assay, human cardiac myofibroblast mediated collagen fiber remodeling was attenuated by PRG4 (1.17 ± 0.03 vs 0.90 ± 0.05; P = .002). In vivo, removal of pericardial fluid alone induced severe intrapericardial adhesion formation, tissue thickening, and inflammatory fluid collections. Restoration of intrapericardial PRG4 was protective against fibrous adhesions and preserved the pericardial space. CONCLUSIONS: For the first time, we show that PRG4 is expressed in human pericardial fluid and regulates local fibrotic myofibroblast activity. Loss of PRG4-enriched pericardial fluid after cardiotomy might induce adhesion formation. Therapeutic restoration of intrapericardial PRG4 might prevent fibrous/inflammatory adhesions and reduce the risk of sternal reentry.


Asunto(s)
Miofibroblastos/efectos de los fármacos , Pericardio/efectos de los fármacos , Proteoglicanos/farmacología , Enfermedades Torácicas/prevención & control , Animales , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Líquido Pericárdico/metabolismo , Pericardio/metabolismo , Pericardio/patología , Proteoglicanos/metabolismo , Sus scrofa , Enfermedades Torácicas/metabolismo , Enfermedades Torácicas/patología , Adherencias Tisulares
9.
J Orthop Res ; 36(9): 2392-2405, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29575101

RESUMEN

Generating the best possible bioengineered cartilage from passaged chondrocytes requires culture condition optimization. In this study, the use of adherent agarose mold (adAM) cultures to support redifferentiation of passaged twice (P2) chondrocytes and serve as a scalable platform to assess the effect of growth factor combinations on proteoglycan accumulation by cells was examined. By 2 days in adAM culture, bovine P2 cells were partially redifferentiated as demonstrated by regression of actin-based dedifferentiation signalling and fibroblast matrix and contractile gene expression. By day 10, aggrecan and type II collagen gene expression were significantly increased in adAM cultured cells. At day 20, a continuous layer of cartilage tissue was observed. There was no evidence of tissue contraction by P2 cells in adAM cultures. The matrix properties of the resultant tissue as well as proteoglycan 4 (PRG4) secreted by the cells were dependent on the initial cell seeding density. AdAM cultures were scalable and culture within small 3 mm diameter adAM allowed for multi-factorial assessment of growth factors on proteoglycan accumulation by human P2 chondrocytes. Although there was a patient specific response in proteoglycan accumulation to the various cocktail combinations, the cocktail consisting of 2 ng/ml TGFß1, 10 ng/ml FGF2, and 250 ng/ml FGF18 resulted in a consistent increase in alcian blue tissue staining. Additional studies will be required to identify the optimal conditions to bioengineer articular cartilage tissue for clinical use. However, the results to date suggest that adAM cultures may be suitable to use for high throughput assessment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2392-2405, 2018.


Asunto(s)
Diferenciación Celular , Condrocitos/citología , Perfilación de la Expresión Génica , Sefarosa/química , Ingeniería de Tejidos/métodos , Actinas/química , Azul Alcián/química , Animales , Anticuerpos/química , Cartílago/patología , Cartílago Articular/metabolismo , Bovinos , Adhesión Celular , ADN/análisis , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Proteoglicanos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
10.
Exp Eye Res ; 161: 1-9, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28549901

RESUMEN

Sjögren's syndrome (SS) is an autoimmune disease affecting the lacrimal and salivary glands with hallmark clinical symptoms of dry eye and dry mouth. Recently, markedly increased cathepsin S (CTSS) activity has been observed in the tears of SS patients. Proteoglycan 4 (PRG4), also known as lubricin, is an effective boundary lubricant that is naturally present on the ocular surface. While PRG4 is susceptible to proteolytic digestion, the potential effect of CTSS on PRG4 remains unknown. The objective of this study was to assess the ability of CTSS to enzymatically degrade purified PRG4, and PRG4 naturally present in human tears, and alter ocular surface boundary lubricating properties. To assess the potential time course and dose-dependency of PRG4 digestion by CTSS, full-length recombinant human PRG4 (rhPRG4) was incubated at 37 °C with or without CTSS in an enzymatic digestion buffer. Digestion of PRG4 by CTSS was also examined within normal human tear samples, both with and without supplementation by rhPRG4. Finally, digestion of endogenous PRG4 by CTSS, and the effect of a CTSS inhibitor, was examined in SS tears on Schirmer strips. Digestion products were separated on 3-8% SDS-PAGE and visualized by protein staining and western blotting. The boundary lubricating ability of rhPRG4 samples was assessed using an in vitro human eyelid-cornea friction test. Finally, SDS-PAGE protein stain bands resulting from rhPRG4 digestion were submitted for tandem mass spectrometry analysis to confirm their identity as PRG4 and identify non-tryptic cleavage sites. CTSS digested rhPRG4 in a time and dose dependent manner. CTSS digestion of rhPRG4 at 1% (where % is the mass ratio of CTSS to rhPRG4) resulted in a time dependent decrease in the full-length, ∼460 kDa, monomeric rhPRG4 band, and an appearance of lower MW fragments. After 20 h, no full-length rhPRG4 was observed. Furthermore, with an increased relative enzyme concentration of 3%, no protein bands were observed after 2 h, indicating complete digestion of rhPRG4. Western blotting demonstrated PRG4 is present in normal human tears, and that rhPRG4, tears, and tears supplemented with rhPRG4 incubated with 3-9% CTSS demonstrated decreased intensity of high MW PRG4 bands, indicative of partial degradation by CTSS. Similarly, western blotting of PRG4 in SS tears incubated with CTSS demonstrated decreased intensity of high MW PRG4 bands, which was reversed in the presence of the CTSS inhibitor. CTSS treatment of rhPRG4 resulted in an increased friction coefficient, compared to untreated controls. Lastly, the lower MW bands were confirmed to be PRG4 fragments by tandem mass spectrometry, and 6 non-tryptic cleavage sites were identified. rhPRG4 is susceptible to proteolytic digestion by CTSS, both alone and in human tears, which results in diminished ocular surface boundary lubricating ability. Moreover, endogenous PRG4 is susceptible to proteolytic digestion by CTSS, both in normal and SS tears. Given the elevated activity of CTSS in SS tears, and the role intact PRG4 plays in ocular surface health and lubrication, degradation of PRG4 by CTSS is a potential mechanism for diminished ocular surface lubrication in SS. Collectively these results suggest that tear supplementation of PRG4 may be beneficial for SS patients.


Asunto(s)
Catepsinas/farmacología , Proteoglicanos/metabolismo , Síndrome de Sjögren/tratamiento farmacológico , Lágrimas/efectos de los fármacos , Secuencia de Aminoácidos , Western Blotting , Córnea/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Fricción , Glicoproteínas/metabolismo , Humanos , Lubrificación , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Síndrome de Sjögren/metabolismo , Propiedades de Superficie , Espectrometría de Masas en Tándem , Lágrimas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA