RESUMEN
By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of L-glycero-D-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of L,D-HepII in P. mirabilis strains.
Asunto(s)
Proteínas Bacterianas/metabolismo , Etanolaminofosfotransferasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Secuencia de Carbohidratos , Etanolaminofosfotransferasa/química , Etanolaminofosfotransferasa/clasificación , Genoma Bacteriano , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Filogenia , Proteus mirabilis/enzimología , Proteus mirabilis/genética , Alineación de Secuencia , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
We report here the identification of waa clusters with the genes required for the biosynthesis of the core lipopolysaccharides (LPS) of two Plesiomonas shigelloides strains. Both P. shigelloides waa clusters shared all of the genes besides the ones flanking waaL. In both strains, all of the genes were found in the waa gene cluster, although one common core biosynthetic gene (wapG) was found in a different chromosome location outside the cluster. Since P. shigelloides and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up at least to the second outer-core residue, the functions of the common P. shigelloides genes were elucidated by genetic complementation studies using well-defined K. pneumoniae mutants. The function of strain-specific inner- or outer-core genes was identified by using as a surrogate acceptor LPS from three well-defined K. pneumoniae core LPS mutants. Using this strategy, we were able to assign a proteomic function to all of the P. shigelloides waa genes identified in the two strains encoding six new glycosyltransferases (WapA, -B, -C, -D, -F, and -G). P. shigelloides demonstrated an important variety of core LPS structures, despite being a single species of the genus, as well as high homologous recombination in housekeeping genes.
Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Lipopolisacáridos/biosíntesis , Plesiomonas/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Plesiomonas/genéticaRESUMEN
We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.
Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional , Glicosiltransferasas/clasificación , Lipopolisacáridos/química , Mutación , FilogeniaRESUMEN
We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).
Asunto(s)
Aeromonas/metabolismo , Proteínas Bacterianas/metabolismo , Glucanos/metabolismo , Ligasas/metabolismo , Uridina Difosfato Glucosa/metabolismo , Aeromonas/genética , Aeromonas/fisiología , Adhesión Bacteriana , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Secuencia de Carbohidratos , Línea Celular Tumoral , Electroforesis en Gel de Poliacrilamida , Prueba de Complementación Genética , Glucanos/química , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Humanos , Ligasas/genética , Lipopolisacáridos/metabolismo , Viabilidad Microbiana , Datos de Secuencia Molecular , Mutación , Antígenos O/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismoRESUMEN
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.
Asunto(s)
Cápsulas Bacterianas/química , Membrana Celular/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Mutación , Antígenos Bacterianos , Cápsulas Bacterianas/metabolismo , Membrana Celular/metabolismo , Medios de Cultivo Condicionados/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Heptosas/química , Lipopolisacáridos/química , Espectroscopía de Resonancia Magnética , Antígenos O/genética , Antígenos O/metabolismo , Polisacáridos Bacterianos , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
The Aeromonas hydrophila AH-3 WecP represents a new class of UDP-HexNAc:polyprenol-P HexNAc-1-P transferases. These enzymes use a membrane-associated polyprenol phosphate acceptor (undecaprenyl phosphate [Und-P]) and a cytoplasmic UDP-d-N-acetylhexosamine sugar nucleotide as the donor substrate. Until now, all the WecA enzymes tested were able to transfer UDP-GlcNAc to the Und-P. In this study, we present in vitro and in vivo proofs that A. hydrophila AH-3 WecP transfers GalNAc to Und-P and is unable to transfer GlcNAc to the same enzyme substrate. The molecular topology of WecP is more similar to that of WbaP (UDP-Gal polyprenol-P transferase) than to that of WecA (UDP-GlcNAc polyprenol-P transferase). WecP is the first UDP-HexNAc:polyprenol-P GalNAc-1-P transferase described.
Asunto(s)
Aeromonas hydrophila/enzimología , N-Acetilhexosaminiltransferasas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Secuencia de Carbohidratos , Modelos Moleculares , Datos de Secuencia Molecular , N-Acetilhexosaminiltransferasas/químicaRESUMEN
Plesiomonas shigelloides is a Gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal infections, which especially invades immunocompromised patients and neonates. The lipopolysaccharides are one of the major virulence determinants in Gram-negative bacteria and are structurally composed of three different domains: the lipid A, the core oligosaccharide and the O-antigen polysaccharide. In the last few years we elucidated the structures of the O-chain and the core oligosaccharide from the P. shigelloides strain 302-73. In this paper we now report the characterization of the linkage between the core and the O-chain. The LPS obtained after PCP extraction contained a small number of O-chain repeating units. The product obtained by hydrazinolysis was analysed by FTICR-ESIMS and suggested the presence of an additional Kdo in the core oligosaccharide. Furthermore, the LPS was hydrolysed under mild acid conditions and a fraction that contained one O-chain repeating unit linked to a Kdo residue was isolated and characterized by FTICR-ESIMS and NMR spectroscopy. Moreover, after an alkaline reductive hydrolysis, a disaccharide α-Kdo-(2â6)-GlcNol was isolated and characterized. The data obtained proved the presence of an α-Kdo in the outer core and allowed the identification of the O-antigen biological repeating unit as well as its linkage with the core oligosaccharide.
Asunto(s)
Antígenos O/química , Plesiomonas/química , Acilación , Secuencia de Carbohidratos , Concentración de Iones de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Antígenos O/aislamiento & purificación , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
The core lipopolysaccharides (LPS) of Proteus mirabilis as well as those of Klebsiella pneumoniae and Serratia marcescens are characterized by the presence of a hexosamine-galacturonic acid disaccharide (αHexN-(1,4)-αGalA) attached by an α1,3 linkage to L-glycero-D-manno-heptopyranose II (L-glycero-α-D-manno-heptosepyranose II). In K. pneumoniae, S. marcescens, and some P. mirabilis strains, HexN is D-glucosamine, whereas in other P. mirabilis strains, it corresponds to D-galactosamine. Previously, we have shown that two enzymes are required for the incorporation of D-glucosamine into the core LPS of K. pneumoniae; the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS, and WabN catalyzes the deacetylation of the incorporated GlcNAc. Here we report the presence of two different HexNAc transferases depending on the nature of the HexN in P. mirabilis core LPS. In vivo and in vitro assays using LPS truncated at the level of galacturonic acid as acceptor show that these two enzymes differ in their specificity for the transfer of GlcNAc or GalNAc. By contrast, only one WabN homologue was found in the studied P. mirabilis strains. Similar assays suggest that the P. mirabilis WabN homologue is able to deacetylate both GlcNAc and GalNAc. We conclude that incorporation of d-galactosamine requires three enzymes: Gne epimerase for the generation of UDP-GalNAc from UDP-GlcNAc, N-acetylgalactosaminyltransferase (WabP), and LPS:HexNAc deacetylase.
Asunto(s)
Galactosamina/metabolismo , Bacterias Gramnegativas/enzimología , Lipopolisacáridos/biosíntesis , Complejos Multienzimáticos/metabolismo , Transferasas/metabolismo , Secuencia de Bases , Galactosamina/genética , Bacterias Gramnegativas/genética , Lipopolisacáridos/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Transferasas/genéticaRESUMEN
In this study, we report the identification of genes required for the biosynthesis of the core lipopolysaccharides (LPSs) of two strains of Proteus mirabilis. Since P. mirabilis and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up to the second outer-core residue, the functions of the common P. mirabilis genes was elucidated by genetic complementation studies using well-defined mutants of K. pneumoniae. The functions of strain-specific outer-core genes were identified by using as surrogate acceptors LPSs from two well-defined K. pneumoniae core LPS mutants. This approach allowed the identification of two new heptosyltransferases (WamA and WamC), a galactosyltransferase (WamB), and an N-acetylglucosaminyltransferase (WamD). In both strains, most of these genes were found in the so-called waa gene cluster, although one common core biosynthetic gene (wabO) was found outside this cluster.
Asunto(s)
Proteínas Bacterianas/genética , Glucosiltransferasas/genética , Lipopolisacáridos/biosíntesis , Familia de Multigenes , Proteus mirabilis/genética , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Prueba de Complementación Genética , Glucosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Lipopolisacáridos/química , Datos de Secuencia Molecular , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Proteus mirabilis/enzimología , Proteus mirabilis/metabolismo , Análisis de Secuencia de ADNRESUMEN
The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide alpha-d-GlcN-(1-->7)-l-alpha-d-Hep-(1-->2)-l-alpha-d-Hep-(1-->3)-l-alpha-d-Hep-(1-->5)-alpha-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.
Asunto(s)
Aeromonas/metabolismo , Proteínas Bacterianas/metabolismo , Esterasas/metabolismo , Glucosamina/metabolismo , Glicosiltransferasas/metabolismo , Lipopolisacáridos/metabolismo , Complejos Multienzimáticos/metabolismo , Acetilglucosamina/metabolismo , Aeromonas/enzimología , Aeromonas/genética , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Aeromonas salmonicida/enzimología , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Electroforesis en Gel de Poliacrilamida , Esterasas/genética , Glicosiltransferasas/genética , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrólisis , Cinética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Mutación , Homología de Secuencia de AminoácidoRESUMEN
Comparison between the lipopolysaccharide (LPS) core structures of Aeromonas salmonicida subsp. salmonicida A450 and Aeromonas hydrophila AH-3 shows great similarity in the inner LPS core and part of the outer LPS core but some differences in the distal part of the outer LPS core (residues ld-Hep, d-Gal, and d-GalNAc). The three genomic regions encoding LPS core biosynthetic genes in A. salmonicida A450, of which regions 2 and 3 have genes identical to those of A. hydrophila AH-3, were fully sequenced. A. salmonicida A450 region 1 showed seven genes: three identical to those of A. hydrophila AH-3, three similar but not identical to those of A. hydrophila AH-3, and one without any homology to any well-characterized gene. A. salmonicida A450 mutants with alterations in the genes that were not identical to those of A. hydrophila AH-3 were constructed, and their LPS core structures were fully elucidated. At the same time, all the A. salmonicida A450 genes identical to those of A. hydrophila AH-3 were used to complement the previously obtained A. hydrophila AH-3 mutants for each of these genes. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. salmonicida A450. Furthermore, hybridization studies with internal probes for the A. salmonicida-specific genes using different A. salmonicida strains (strains of different subspecies or atypical strains) showed a unique or prevalent LPS core type, which is the one fully characterized for A. salmonicida A450.
Asunto(s)
Aeromonas salmonicida/genética , Lipopolisacáridos/biosíntesis , Proteómica , Aeromonas hydrophila/química , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Aeromonas salmonicida/química , Aeromonas salmonicida/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Prueba de Complementación Genética , Genoma Bacteriano , Lipopolisacáridos/química , Lipopolisacáridos/genética , Datos de Secuencia MolecularRESUMEN
By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.
Asunto(s)
Aeromonas hydrophila/genética , Genes Bacterianos , Antígenos O/biosíntesis , Aeromonas hydrophila/metabolismo , Secuencia de Carbohidratos , Clonación Molecular , Orden Génico , Prueba de Complementación Genética , Glicosiltransferasas/genética , Datos de Secuencia Molecular , Estructura Molecular , Familia de Multigenes , Mutación , Antígenos O/química , Antígenos O/genética , Análisis de Secuencia de ADNRESUMEN
The mesophilic Aeromonas hydrophila AH-3 (serotype O34) strain shows two different UDP-hexose epimerases in its genome: GalE (EC 3.1.5.2) and Gne (EC 3.1.5.7). Similar homologues were detected in the different mesophilic Aeromonas strains tested. GalE shows only UDP-galactose 4-epimerase activity, while Gne is able to perform a dual activity (mainly UDP-N-acetyl galactosamine 4-epimerase and also UDP-galactose 4-epimerase). We studied the activities in vitro of both epimerases and also in vivo through the lipopolysaccharide (LPS) structure of A. hydrophila gne mutants, A. hydrophila galE mutants, A. hydrophila galE-gne double mutants, and independently complemented mutants with both genes. Furthermore, the enzymatic activity in vivo, which renders different LPS structures on the mentioned A. hydrophila mutant strains or the complemented mutants, allowed us to confirm a clear relationship between the virulence of these strains and the presence/absence of the O34 antigen LPS.
Asunto(s)
Aeromonas hydrophila/genética , Carbohidrato Epimerasas/genética , UDPglucosa 4-Epimerasa/genética , Aeromonas hydrophila/metabolismo , Aeromonas hydrophila/patogenicidad , Secuencia de Aminoácidos , Animales , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/fisiología , Secuencia de Carbohidratos , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida , Orden Génico , Prueba de Complementación Genética , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Antígenos O/química , Antígenos O/metabolismo , Oncorhynchus mykiss , Plásmidos , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , UDPglucosa 4-Epimerasa/metabolismo , UDPglucosa 4-Epimerasa/fisiología , Virulencia/genéticaRESUMEN
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae contains two galacturonic acid (GalA) residues, but only one GalA transferase (WabG) has been identified. Data from chemical and structural analysis of LPS isolated from a wabO mutant show the absence of the inner core beta-GalA residue linked to L-glycero-D-manno-heptose III (L,D-Hep III). An in vitro assay demonstrates that the purified WabO is able to catalyze the transfer of GalA from UDP-GalA to the acceptor LPS isolated from the wabO mutant, but not to LPS isolated from waaQ mutant (deficient in l,d-Hep III). The absence of this inner core beta-GalA residue results in a decrease in virulence in a capsule-dependent experimental mouse pneumonia model. In addition, this mutation leads to a strong reduction in cell-bound capsule. Interestingly, a K66 Klebsiella strain (natural isolate) without a functional wabO gene shows reduced levels of cell-bound capsule in comparison to those of other K66 strains. Thus, the WabO enzyme plays an important role in core LPS biosynthesis and determines the level of cell-bound capsule in Klebsiella pneumoniae.
Asunto(s)
Cápsulas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Ácidos Hexurónicos/metabolismo , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , Animales , Cápsulas Bacterianas/ultraestructura , Secuencia de Carbohidratos , Electroforesis en Gel de Poliacrilamida , Femenino , Cromatografía de Gases y Espectrometría de Masas , Genes Bacterianos , Glicosiltransferasas/química , Glicosiltransferasas/genética , Ácidos Hexurónicos/química , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Lipopolisacáridos/química , Espectroscopía de Resonancia Magnética , Ratones , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Mutación , Fenotipo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Virulencia/genéticaRESUMEN
The complete structures of LPS core types 1 and 2 from Klebsiella pneumoniae have been described by other authors. They are characterized by a lack of phosphoryl residues, but they contain galacturonic acid (GalA) residues, which contribute to the necessary negative charges. The presence of a capsule was determined in core-LPS non-polar mutants from strains 52145 (O1 : K2), DL1 (O1 : K1) and C3 (O8 : K66). O-antigen ligase (waaL) mutants produced a capsule. Core mutants containing the GalA residues were capsulated, while those lacking the residues were non capsulated. Since the proteins involved in the transfer of GalA (WabG) and glucosamine residues (WabH) are known, the chemical basis of the capsular-K2-cell-surface association was studied. Phenol/water extracts from K. pneumoniae 52145DeltawabH waaL and 52145DeltawaaL mutants, but not those from from K. pneumoniae 52145DeltawabG waaL mutant, contained both LPS and capsular polysaccharide, even after hydrophobic chromatography. The two polysaccharides were dissociated by gel-filtration chromatography, eluting with detergent and metal-ion chelators. From these results, it is concluded that the K2 capsular polysaccharide is associated by an ionic interaction to the LPS through the negative charge provided by the carboxyl groups of the GalA residues.
Asunto(s)
Cápsulas Bacterianas/química , Lipopolisacáridos/química , Animales , Cápsulas Bacterianas/metabolismo , Secuencia de Carbohidratos , Ácidos Hexurónicos/química , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Neumonía Bacteriana/microbiologíaRESUMEN
Mesophilic Aeromonas hydrophila strains of serotype O34 typically express smooth lipopolysaccharide (LPS) on their surface. A single mutation in the gene that codes for UDP N-acetylgalactosamine 4-epimerase (gne) confers the O(-) phenotype (LPS without O-antigen molecules) on a strain in serotypes O18 and O34, but not in serotypes O1 and O2. The gne gene is present in all the mesophilic Aeromonas strains tested. No changes were observed for the LPS core in a gne mutant from A. hydrophila strain AH-3 (serotype O34). O34 antigen LPS contains N-acetylgalactosamine, while no such sugar residue forms part of the LPS core from A. hydrophila AH-3. Some of the pathogenic features of A. hydrophila AH-3 gne mutants are drastically reduced (serum resistance or adhesion to Hep-2 cells), and the gne mutants are less virulent for fish and mice compared to the wild-type strain. Strain AH-3, like other mesophilic Aeromonas strains, possess two kinds of flagella, and the absence of O34 antigen molecules by gne mutation in this strain reduced motility without any effect on the biogenesis of both polar and lateral flagella. The reintroduction of the single wild-type gne gene in the corresponding mutants completely restored the wild-type phenotype (presence of smooth LPS) independently of the O wild-type serotype, restored the virulence of the wild-type strain, and restored motility (either swimming or swarming).
Asunto(s)
Aeromonas hydrophila/enzimología , Aeromonas hydrophila/patogenicidad , Carbohidrato Epimerasas/genética , Infecciones por Bacterias Gramnegativas/enzimología , Aeromonas hydrophila/clasificación , Aeromonas hydrophila/genética , Secuencia de Aminoácidos , Animales , Carbohidrato Epimerasas/fisiología , Secuencia de Carbohidratos , Línea Celular Tumoral , Clonación Molecular , Escherichia coli , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Ratones , Datos de Secuencia Molecular , Movimiento , Oncorhynchus mykiss , Alineación de Secuencia , Serotipificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Virulencia/genéticaRESUMEN
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae is characterized by the presence of disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to l-glycero-d-manno-heptopyranose II (ld-HeppII). Previously it has been shown that the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS. The presence of GlcNAc instead of GlcN and the lack of UDP-GlcN in bacteria indicate that an additional enzymatic step is required. In this work we identified a new gene (wabN) in the K. pneumoniae core LPS biosynthetic cluster. Chemical and structural analysis of K. pneumoniae non-polar wabN mutants showed truncated core LPS with GlcNAc instead of GlcN. In vitro assays using LPS truncated at the level of d-galacturonic acid (GalA) and cell-free extract containing WabH and WabN together led to the incorporation of GlcN, whereas none of them alone were able to do it. This result suggests that the later enzyme (WabN) catalyzes the deacetylation of the core LPS containing the GlcNAc residue. Thus, the incorporation of the GlcN residue to core LPS in K. pneumoniae requires two distinct enzymatic steps. WabN homologues are found in Serratia marcescens and some Proteus strains that show the same disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to ld-HeppII.
Asunto(s)
Glucosamina/metabolismo , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/química , Serratia marcescens/metabolismo , Acetilación , Secuencia de Aminoácidos , Secuencia de Carbohidratos , Klebsiella pneumoniae/crecimiento & desarrollo , Lipopolisacáridos/química , Datos de Secuencia Molecular , Mutagénesis , Mutación , N-Acetilglucosaminiltransferasas/genética , Plásmidos , Homología de Secuencia de Aminoácido , Serratia marcescens/químicaRESUMEN
The complete (1)H and (13)C NMR characterization of the tetrasaccharide repeating unit from the K2 polysaccharide of Klebsiella pneumoniae strain 52145 is reported. [chemical structure] In addition a model for its secondary structure was suggested on the basis of dynamic and molecular calculations.
Asunto(s)
Klebsiella pneumoniae/química , Polisacáridos Bacterianos/química , Cápsulas Bacterianas , Secuencia de Carbohidratos , Espectroscopía de Resonancia por Spin del Electrón , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Oligosacáridos de Cadena Ramificada/químicaRESUMEN
Up to now only one major type of core oligosaccharide has been found in the lipopolysaccharide of all Klebsiella pneumoniae strains analyzed. Applying a different screening approach, we identified a novel Klebsiella pneumoniae core (type 2). Both Klebsiella core types share the same inner core and the outer-core-proximal disaccharide, GlcN-(1,4)-GalA, but they differ in the GlcN substituents. In core type 2, the GlcpN residue is substituted at the O-4 position by the disaccharide beta-Glcp(1-6)-alpha-Glcp(1, while in core type 1 the GlcpN residue is substituted at the O-6 position by either the disaccharide alpha-Hep(1-4)-alpha-Kdo(2 or a Kdo residue (Kdo is 3-deoxy-D-manno-octulosonic acid). This difference correlates with the presence of a three-gene region in the corresponding core biosynthetic clusters. Engineering of both core types by interchanging this specific region allowed studying the effect on virulence. The replacement of Klebsiella core type 1 in a highly type 2 virulent strain (52145) induces lower virulence than core type 2 in a murine infection model.
Asunto(s)
Klebsiella pneumoniae/fisiología , Lipopolisacáridos/química , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Genes Bacterianos , Prueba de Complementación Genética , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Dosificación Letal Mediana , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , VirulenciaRESUMEN
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.