RESUMEN
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Asunto(s)
Amida Sintasas , Glutatión , NADH NADPH Oxidorreductasas , Trypanosoma , NADH NADPH Oxidorreductasas/metabolismo , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Humanos , Amida Sintasas/metabolismo , Amida Sintasas/antagonistas & inhibidores , Trypanosoma/efectos de los fármacos , Trypanosoma/metabolismo , Glutatión/metabolismo , Glutatión/análogos & derivados , Animales , Espermidina/análogos & derivados , Espermidina/metabolismo , Leishmania/efectos de los fármacos , Leishmania/metabolismo , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Trypanosomatina/metabolismo , Trypanosomatina/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/metabolismoRESUMEN
One of the major drawbacks of current treatments for neglected tropical diseases is the low safety of the drugs used and the emergence of resistance. Leishmaniasis is a group of neglected diseases caused by protozoa of the trypanosomatidae family that lacks preventive vaccines and whose pharmacological treatments are scarce and unsafe. Combination therapy is a strategy that could solve the above-mentioned problems, due to the participation of several mechanisms of action and the reduction in the amount of drug necessary to obtain the therapeutic effect. In addition, this approach also increases the odds of finding an effective drug following the repurposing strategy. From the previous screening of two collections of repositioning drugs, we found that pyrvinium pamoate had a potent leishmanicidal effect. For this reason, we decided to combine it separately with two clinically used leishmanicidal drugs, miltefosine and paromomycin. These combinations were tested in axenic amastigotes of Leishmania infantum obtained from bone marrow cells and in intramacrophagic amastigotes obtained from primary cultures of splenic cells, both cell types coming from experimentally infected mice. Some of the combinations showed synergistic behavior, especially in the case of the combination of pyrvinium pamoate with paromomycin, and exhibited low cytotoxicity and good tolerability on intestinal murine organoids, which reveal the potential of these combinations for the treatment of leishmaniasis.
RESUMEN
Neglected tropical diseases transmitted by trypanosomatids include three major human scourges that globally affect the world's poorest people: African trypanosomiasis or sleeping sickness, American trypanosomiasis or Chagas disease and different types of leishmaniasis. Different metabolic pathways have been targeted to find antitrypanosomatid drugs, including polyamine metabolism. Since their discovery, the naturally occurring polyamines, putrescine, spermidine and spermine, have been considered important metabolites involved in cell growth. With a complex metabolism involving biosynthesis, catabolism and interconversion, the synthesis of putrescine and spermidine was targeted by thousands of compounds in an effort to produce cell growth blockade in tumor and infectious processes with limited success. However, the discovery of eflornithine (DFMO) as a curative drug against sleeping sickness encouraged researchers to develop new molecules against these diseases. Polyamine synthesis inhibitors have also provided insight into the peculiarities of this pathway between the host and the parasite, and also among different trypanosomatid species, thus allowing the search for new specific chemical entities aimed to treat these diseases and leading to the investigation of target-based scaffolds. The main molecular targets include the enzymes involved in polyamine biosynthesis (ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine synthase), enzymes participating in their uptake from the environment, and the enzymes involved in the redox balance of the parasite. In this review, we summarize the research behind polyamine-based treatments, the current trends, and the main challenges in this field.
RESUMEN
With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.
RESUMEN
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Asunto(s)
Enfermedad de Chagas , Leishmaniasis , Tripanosomiasis Africana , Animales , Humanos , Preparaciones Farmacéuticas , Tripanosomiasis Africana/tratamiento farmacológico , Enfermedad de Chagas/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológicoRESUMEN
Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.
Asunto(s)
Leishmania , Leishmaniasis , Humanos , Simulación del Acoplamiento Molecular , Objetivos , Leishmaniasis/tratamiento farmacológico , Poliaminas/metabolismoRESUMEN
Visceral leishmaniasis is a neglected vector-borne tropical disease caused by Leishmania donovani and Leishmania infantum that is endemic not only in East African countries, but also in Asia, regions of South America and the Mediterranean Basin. For the pharmacological control of this disease, there is a limited number of old and, in general, poorly adherent drugs, with a multitude of adverse effects and low oral bioavailability, which favor the emergence of resistant pathogens. Pentavalent antimonials are the first-line drugs, but due to their misuse, resistant Leishmania strains have emerged worldwide. Although these drugs have saved many lives, it is recommended to reduce their use as much as possible and replace them with novel and more friendly drugs. From a commercial collection of anti-infective drugs, we have recently identified nifuratel-a nitrofurantoin used against vaginal infections-as a promising repurposing drug against a mouse model of visceral leishmaniasis. In the present work, we have tested combinations of miltefosine-the only oral drug currently used against leishmaniasis-with nifuratel in different proportions, both in axenic amastigotes from bone marrow and in intracellular amastigotes from infected Balb/c mouse spleen macrophages, finding a potent synergy in both cases. In vivo evaluation of oral miltefosine/nifuratel combinations using a bioimaging platform has revealed the potential of these combinations for the treatment of this disease.
Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmaniasis Visceral , Nifuratel , Animales , Femenino , Ratones , Leishmaniasis Visceral/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Fosforilcolina/farmacología , Fosforilcolina/uso terapéuticoRESUMEN
In the absence of a vaccine, there is a need to find new drugs for the treatment of neglected tropical diseases, such as leishmaniasis, that can overcome the many drawbacks of those currently used. These disadvantages include cost, the need to maintain a cold chain, the route of administration, the associated adverse effects and the generation of resistance. In this work we have evaluated the antileishmanial effect of 1,5- and 1,8-substituted fused naphthyridines through in vitro and ex vivo assays, using genetically modified axenic and intramacrophagic Leishmania infantum amastigotes. The toxicity of these compounds has been tested in the mammalian host cell using murine splenic macrophages, as well as in murine intestinal organoids (miniguts) in order to assess their potential for oral administration. The 1,8- derivatives showed greater leishmanicidal activity and the presence of a nitrogen atom in the fused ring to the naphthyridine was important to increase the activity of both types of molecules. The aromatization of the pyridine ring also had marked differences in the activity of the compounds.
Asunto(s)
Antiprotozoarios , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ratones , Administración Oral , Antiprotozoarios/farmacología , Bioensayo , Naftiridinas/farmacología , MamíferosRESUMEN
Diseases caused by trypanosomatids are serious public health concerns in low-income endemic countries. Leishmaniasis is presented in two main clinical forms, visceral leishmaniasis-caused by L. infantum and L. donovani-and cutaneous leishmaniasis-caused by many species, including L. major, L. tropica and L. braziliensis. As for certain other trypanosomatids, sexual reproduction has been confirmed in these parasites, and formation of hybrids can contribute to virulence, drug resistance or adaptation to the host immune system. In the present work, the capability of intraclonal and interspecies genetic exchange has been investigated using three parental strains: L. donovani, L. tropica and L. major, which have been engineered to express different fluorescent proteins and antibiotic resistance markers in order to facilitate the phenotypic selection of hybrid parasites after mating events. Stationary and exponential-phase promastigotes of each species were used, in in vitro experiments, some of them containing LULO cells (an embryonic cell line derived from Lutzomyia longipalpis). Several intraclonal hybrids were obtained with L. tropica as crossing progenitor, but not with L. donovani or L. major. In interspecies crossings, three L. donovani x L. major hybrids and two L. donovani x L. tropica hybrids were isolated, thereby demonstrating the feasibility to obtain in vitro hybrids of parental lines causing different tropism of leishmaniasis. Ploidy analysis revealed an increase in DNA content in all hybrids compared to the parental strains, and nuclear analysis showed that interspecies hybrids are complete hybrids, i.e. each of them showing at least one chromosomal set from each parental. Regarding kDNA inheritance, discrepancies were observed between maxi and minicircle heritage. Finally, phenotypic studies showed either intermediate phenotypes in terms of growth profiles, or a decreased in vitro infection capacity compared to the parental cells. To the best of our knowledge, this is the first time that in vitro interspecies outcrossing has been demonstrated between Leishmania species with different tropism, thus contributing to shed light on the mechanisms underlying sexual reproduction in these parasites.
Asunto(s)
Hibridación Genética , Leishmania donovani/genética , Leishmania major/genética , Leishmania tropica/genética , Animales , Línea Celular , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , PsychodidaeRESUMEN
Leishmaniasis is one of today's most neglected diseases. The emergence of new anti-leishmanial therapies emphasizes several study groups funded by the World Health Organization. The present investigation will focus on the research to determine a few new potential derivatives of ß-carboline ester derivatives against leishmaniasis. The in-silico predicted ADMET properties of most of the titled compounds are in an acceptable range and having drug like properties. Among all the tested analogs, compound ES-3 (EC50 3.36 µM; SI > 29.80) showed comparable and equipotent anti-leishmanial activity as that of standard drug miltefosine (EC50 4.80 µM; SI > 20.80) against amastigote forms of the tested L. infantum strain. Two compounds ES-6 and ES-10 exhibited significant activity with EC50 10.16, 13.56 µM; SI > 4.90, 7.37, respectively. In-silico based molecular docking and dynamics study of the significantly active analog also performed to study the putative binding mode, interaction pattern at the active site of the target leishmanial trypanothione reductase enzyme as well as stability of the target-ligand complex. The changes in the conformation of molecules during MD (frame wise trajectory analysis) provided new insights for the development of novel potent molecules. These findings will further give insight that will help modify the compound ES-3 for better potency and the design of novel inhibitors for leishmaniasis.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Humanos , Simulación del Acoplamiento Molecular , Carbolinas/farmacología , Carbolinas/química , Leishmaniasis/tratamiento farmacológico , Conformación Molecular , Antiprotozoarios/farmacología , Antiprotozoarios/químicaRESUMEN
This work describes, for the first time, the synthesis of dialkyl (2-arylquinolin-8-yl)phosphonate derivatives. The preparation was carried out through a direct and simple process as a multicomponent Povarov reaction of aminophenylphosphonates, aldehydes, and styrenes and subsequent oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or, alternatively, by a cycloaddition reaction between phosphonate aldimines and acetylenes. Based on phosphonate group structural characteristics, considered as phosphorous isosteres of carboxylic heterocycles, they may present interesting biological properties related to cell proliferation. In the current report, a new series of dialkyl (2-arylquinolin-8-yl)phosphonates have been synthesized and their antiproliferative effect evaluated on different human cancer and embryonic cells, as well as on Leishmania infantum parasites, a eukaryotic protist responsible for visceral leishmaniasis. Thereby, the antitumor effect was assessed in human lung adenocarcinoma cells (A549), human ovarian carcinoma cells (SKOV3), and human embryonic kidney cells (HEK293) versus the non-cancerous lung fibroblasts cell line (MRC5). On the other hand, the antileishmanial activity was tested against both stages of L. infantum cell cycle, namely free-living promastigotes and intramacrophage amastigotes, using a primary culture of Balb/c splenocytes to calculate the selectivity index. Besides the antiproliferative and antileishmanial capacities, their behavior as topoisomerase 1B inhibitors has been evaluated as a possible mechanism of action.
RESUMEN
Background: Eukaryotic topoisomerase 1 is a potential target of anti-parasitic and anti-cancer drugs. Parasites require topoisomerase 1 activity for survival and, consequently, compounds that inhibit topoisomerase 1 activity may be of interest. All effective topoisomerase 1 drugs with anti-cancer activity act by inhibiting the ligation reaction of the enzyme. Screening for topoisomerase 1 targeting drugs, therefore, should involve the possibility of dissecting which step of topoisomerase 1 activity is affected. Methods: Here we present a novel DNA-based assay that allows for screening of the effect of small-molecule compounds targeting the binding/cleavage or the ligation steps of topoisomerase 1 catalysis. This novel assay is based on the detection of a rolling circle amplification product generated from a DNA circle resulting from topoisomerase 1 activity. Results: We show that the binding/cleavage and ligation reactions of topoisomerase 1 can be investigated separately in the presented assay termed REEAD (C|L) and demonstrate that the assay can be used to investigate, which of the individual steps of topoisomerase 1 catalysis are affected by small-molecule compounds. The assay is gel-free and the results can be detected by a simple colorimetric readout method using silver-on-gold precipitation rendering large equipment unnecessary. Conclusion: REEAD (C|L) allows for easy and quantitative investigations of topoisomerase 1 targeting compounds and can be performed in non-specialized laboratories.
RESUMEN
Leishmaniases are vector-borne neglected diseases caused by single-celled parasites. The search for new antileishmanial drugs has experienced a strong boost thanks to the application of bioimaging to phenotypic screenings based on intracellular amastigotes. Mouse splenic explants infected with fluorescent strains of Leishmania are proven tools of drug discovery, where hits can be easily transferred to preclinical in vivo models. We have developed a two-staged platform for antileishmanial drugs. First, we screened two commercial collections of repurposing drugs with a total of 1769 compounds in ex vivo mouse splenocytes infected with an infrared emitting Leishmania infantum strain. The most active and safest compounds were scaled-up to in vivo models of chronic Leishmania donovani visceral leishmaniasis and Leishmania major cutaneous leishmaniasis. From the total of 1769 compounds, 12 hits with selective indices >35 were identified, and 4 of them were tested in vivo in a model of L. donovani visceral leishmaniasis. Nifuratel, a repurposed synthetic nitrofuran, when administered orally at 50 mg/kg bw once or twice a day for 10 days, caused >80% reduction in the parasitic load. Furthermore, the intralesional administration of nifuratel in a model of cutaneous leishmaniasis by L. major produced the parasitological cure. From the previous results we have deduced the great capacity of mouse splenic explants to identify new hits, a model which could be easily transferred to in vivo models, as well as the potential use of nifuratel as an alternative to the current treatment of cutaneous leishmaniasis.
Asunto(s)
Leishmania donovani , Leishmaniasis Cutánea , Nifuratel , Preparaciones Farmacéuticas , Animales , Reposicionamiento de Medicamentos , Leishmaniasis Cutánea/tratamiento farmacológico , RatonesRESUMEN
Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.
RESUMEN
The search for new drugs against neglected parasitic diseases has experienced a major boost in recent years with the incorporation of bioimaging techniques. Visceral leishmaniasis, the second more neglected disease in the world, has effective treatments but with several disadvantages that make the search for new therapeutic solutions an urgent task. Animal models of visceral leishmaniasis that resemble the human disease have the disadvantage of using hamsters, which are an outbred breeding animal too large to obtain acceptable images with current bioimaging methodologies. Mouse models of visceral leishmaniasis seem, however, to be more suitable for early (acute) stages of the disease, but not for chronic ones. In our work, we describe a chronic Balb/c mouse model in which the infection primarily colonizes the spleen and well recreates the late stages of human disease. Thanks to the bioluminescent image, we have been able to identify experimentally, for the first time, a new primary lymphoid organ of colonization, the thymus, which appears infected from the beginning until the late phases of the infection.
Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Animales , Cricetinae , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , BazoRESUMEN
The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens) is used in the industrial production of the ß-lactam antibiotic penicillin. There are several mechanisms regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine (AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in P. chrysogenum.
RESUMEN
Unveiling the protective immune response to visceral leishmaniasis is critical for a rational design of vaccines aimed at reducing the impact caused by this fatal, if left untreated, vector-borne disease. In this study we sought to determine the role of the basic leucine zipper transcription factor ATF-like 3 (Batf3) in the evolution of infection with Leishmania infantum, the causative agent of human visceral leishmaniasis in the Mediterranean Basin and Latin America. For that, Batf3-deficient mice in C57BL/6 background were infected with an L. infantum strain expressing the luciferase gene. Bioluminescent imaging, as well as in vitro parasite titration, demonstrated that Batf3-deficient mice were unable to control hepatic parasitosis as opposed to wild-type C57BL/6 mice. The impaired microbicide capacities of L. infantum-infected macrophages from Batf3-deficient mice mainly correlated with a reduction of parasite-specific IFN-γ production. Our results reinforce the implication of Batf3 in the generation of type 1 immunity against infectious diseases.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Resistencia a la Enfermedad/inmunología , Leishmania infantum , Leishmaniasis Visceral/inmunología , Proteínas Represoras/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Médula Ósea/parasitología , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Leishmaniasis Visceral/parasitología , Hígado/parasitología , Ratones Endogámicos C57BL , Ratones Noqueados , Nitritos/inmunología , Proteínas Represoras/genética , Bazo/citología , Bazo/parasitología , Linfocitos T/inmunologíaRESUMEN
Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.
Asunto(s)
Antiprotozoarios/farmacología , Organismos Acuáticos/química , Productos Biológicos/farmacología , Infecciones por Euglenozoos/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Animales , Antiprotozoarios/uso terapéutico , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Resistencia a Medicamentos , Infecciones por Euglenozoos/parasitología , Ensayos Analíticos de Alto Rendimiento , Humanos , Malaria Falciparum/parasitología , Enfermedades Desatendidas/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium malariae/efectos de los fármacos , Plasmodium malariae/patogenicidad , Trypanosomatina/efectos de los fármacosRESUMEN
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Asunto(s)
Antihelmínticos , Nematodos , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Caenorhabditis elegans , Descubrimiento de Drogas , Resistencia a Medicamentos , HumanosRESUMEN
BACKGROUND: Canine leishmaniasis is a zoonotic disease caused by Leishmania infantum, being the dogs one of the major reservoirs of human visceral leishmaniasis. DNA topology is a consolidated target for drug discovery. In this regard, topoisomerase IB - one of the enzymes controlling DNA topology - has been poisoned by hundreds of compounds that increase DNA fragility and cell death. Aromathecins are novel molecules with a multiheterocyclic ring scaffold that have higher stability than camptothecins. RESULTS: Aromathecins showed strong activity against both forms of L. infantum parasites, free-living promastigotes and intra-macrophagic amastigotes harbored in ex vivo splenic explant cultures obtained from infected BALB/c mice. However, they prevented the relaxation activity of leishmanial topoisomerase IB weakly, which suggests that the inhibition of topoisomerase IB partially explains the antileishmanial effect of these compounds. The effect of aromathecins was also studied against a strain resistant to camptothecin, and results suggested that the trafficking of these compounds is not through the ABCG6 transporter. CONCLUSIONS: Aromathecins are promising novel compounds against canine leishmaniasis that can circumvent potential resistances based on drug efflux pumps.