Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255810

RESUMEN

Lipoprotein(a) (Lp(a)) is an independent risk factor for future coronary events. Variants rs10455872 and rs3798220 in the gene encoding Lp(a) are associated with an increased Lp(a) concentration and risk of coronary artery disease. We aimed to determine whether in high-risk coronary artery disease patients these two genetic variants and the kringle IV type 2 (KIV-2) repeats are associated with impairment of inflammatory and hemostatic parameters. Patients after myocardial infarction with elevated Lp(a) levels were included. Blood samples underwent biochemical and genetic analyses. In carriers of the AC haplotype, the concentrations of tumor necrosis factor (TNF)-α (4.46 vs. 3.91 ng/L, p = 0.046) and plasminogen activator inhibitor-1 (PAI-1) (p = 0.026) were significantly higher compared to non-carriers. The number of KIV-2 repeats was significantly associated with the concentration of high-sensitivity C-reactive protein (ρ = 0.251, p = 0.038) and overall fibrinolytic potential (r = -0.253, p = 0.038). In our patients, a direct association between the AC haplotype and both TNF-α and PAI-1 levels was observed. Our study shows that the number of KIV-2 repeats not only affects proatherosclerotic and proinflammatory effects of Lp(a) but is also associated with its antifibrinolytic properties.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Fibrinólisis/genética , Inhibidor 1 de Activador Plasminogénico/genética , Enfermedad de la Arteria Coronaria/genética , Haplotipos , Infarto del Miocardio/genética , Inflamación/genética , Lipoproteína(a)/genética , Factor de Necrosis Tumoral alfa
2.
Eur J Pharmacol ; 963: 176232, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070635

RESUMEN

Despite progress in treatment, elevated levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) (Lp(a)), represent a significant part of the residual risk. Both are associated with inflammation and the coagulation fibrinolytic system. The purpose of our research was to evaluate the effect of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) on lipid parameters and indicators of inflammation, coagulation and fibrinolysis. We included 100 post myocardial infarction (MI) patients with insufficiently controlled LDL-C values despite the maximum dose of statin, and highly elevated Lp(a). Patients received alirocumab or evolocumab (150 mg sc or 140 mg sc every two weeks, respectively), or placebo for 6 months. In patients receiving PCSK9i, a significant decrease in total cholesterol (TC), LDL-C, triglycerides (TG) and Lp(a), and an increase in high density lipoprotein cholesterol (p < 0.001 for all) was found. Before treatment, the concentrations of TC, LDL-C and TG correlated with the concentrations of thrombin activatable fibrinolysis inhibitor (r = 0.41, p < 0.001; r = 0.353, p < 0.001; r = 0.311, p = 0.003, respectively), and plasminogen activator inhibitor-1 (r = 0.302, p = 0.007; r = 0.218, p = 0.049; r = 0.278; p = 0.013, respectively). The concentrations of TC and LDL-C correlated with overall fibrinolytic potential (r = -0.220, p = 0.034; r = -0.207, p = 0.047, respectively). The concentration of TG was related to the concentration of interleukin 6 (r = 0.290, p = 0.004) and interleukin 8 (r = 0.332, p = 0.001). No correlations between Lp(a) and inflammatory or hemostatic variables were found. No associations were found after treatment. Our results show that inflammatory cytokines and fibrinolytic parameters are related to LDL-C and not Lp(a) in post-MI patients before and with neither of them following PCSK9i treatment. The trial registration number: NCT04613167, Date of registration: November 3, 2020.


Asunto(s)
Anticolesterolemiantes , Infarto del Miocardio , Inhibidores de PCSK9 , Humanos , LDL-Colesterol , Hemostáticos , Inflamación/tratamiento farmacológico , Lipoproteína(a) , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Proproteína Convertasa 9/metabolismo , Subtilisinas , Inhibidores de PCSK9/farmacología
3.
Genes (Basel) ; 14(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36980904

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has an important function in the regulation of lipid metabolism. PCSK9 reduces hepatic low-density lipoprotein receptors, thereby increasing low-density lipoprotein cholesterol levels. However, its regulation remains to be elucidated, including post-transcriptional regulation by microRNAs (miRNAs). We aimed to explore the interplay between miRNAs, total serum PCSK9, and lipids during treatment with PCSK9 inhibitors. A total of 64 patients with stable coronary artery disease and very high lipoprotein(a) levels and 16 sex- and age-matched control subjects were enrolled. Patients received a PCSK9 inhibitor (evolocumab or alirocumab). Total serum PCSK9 levels were measured by immunoassay. RNA was isolated from plasma using magnetic beads, and expression of selected miRNAs was analyzed by quantitative PCR. Total serum PCSK9 levels were significantly higher in control subjects compared with patients. After 6 months of treatment with PCSK9 inhibitors, total serum PCSK9 levels increased significantly. The expression of miR-191-5p was significantly lower, and the expression of miR-224-5p and miR-483-5p was significantly higher in patients compared with control subjects. Using linear regression, the expression of miR-483-5p significantly predicted the serum PCSK9 level at baseline. After the 6-month period of therapy, the expression of miR-191-5p and miR-483-5p significantly increased. Our results support a role for miR-483-5p in regulating circulating PCSK9 in vivo. The difference in expression of miR-191-5p, miR-224-5p, and miR-337-3p between patients and control subjects suggests their possible role in the pathogenesis of coronary artery disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Humanos , Proproteína Convertasa 9/genética , MicroARNs/genética , Inhibidores de PCSK9 , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/genética , Lipoproteína(a)/genética , Lipoproteínas LDL , Subtilisinas
4.
J Cardiovasc Dev Dis ; 9(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36547456

RESUMEN

Despite enormous advances in both surgical and pharmacological treatment, cardiovascular diseases are still the most common cause of morbidity and disability in the western world [...].

5.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36005445

RESUMEN

Patients with advanced heart failure (HF) have reduced cardiac output and impaired peripheral blood flow, which diminishes endothelial shear stress and consequently flow-mediated dilatation (FMD). The aim of our study was to find out whether endothelial dysfunction is associated with the number of CD34+ cells and TNF-α levels in patients with ischemic and non-ischemic HF after stimulation with granulocyte colony-stimulating factor (G-CSF). We included 56 patients with advanced HF (LVEF < 35%). Eighteen patients (32.14%) had ischemic and 38 (67.86%) patients had non-ischemic HF. FMD of the brachial artery was performed before the patients underwent 5-day bone marrow stimulation with daily subcutaneous injections of G-CSF (5 µg/kg bid). On the fifth day peripheral blood CD34+ cell count was measured. No statistically significant differences were found between the patient groups in NT-proBNP levels ((1575 (425−2439) vs. 1273 (225−2239)) pg/mL; p = 0.40), peripheral blood CD34+ cell count ((67.54 ± 102.32 vs. 89.76 ± 71.21) × 106; p = 0.32), TNF-α ((8.72 ± 10.30 vs. 4.96 ± 6.16) ng/mL; p = 0.13) and FMD (6.7 ± 5.4 vs. 7.2 ± 5.9%; p = 0.76). In a linear regression model, only FMD (p = 0.001) and TNF-α (p = 0.003) emerged as statistically significant predictors of CD34+ cells counts. Our study suggests that TNF-α is a good predictor of impaired endothelial function and of CD34+ cells mobilization after G-CSF stimulation in patients with advanced HF of ischemic and non-ischemic origin.

6.
Proc Natl Acad Sci U S A ; 119(29): e2207020119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858345

RESUMEN

Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN-TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL-/- mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+-Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.


Asunto(s)
Síndrome Coronario Agudo , Proteína C-Reactiva , Fármacos Cardiovasculares , Enfermedad de la Arteria Coronaria , Ranolazina , Bloqueadores de los Canales de Sodio , Sodio , Síndrome Coronario Agudo/tratamiento farmacológico , Animales , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Células Endoteliales/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Ratones , Ranolazina/farmacología , Ranolazina/uso terapéutico , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico
7.
Arch Med Sci ; 18(4): 855-869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832698

RESUMEN

Atherosclerosis is a chronic inflammatory disease that is associated with risk of cardiovascular events. The best-characterised and well-standardised clinical indicator of inflammation is C-reactive protein. Current evidence-based drug therapies for prevention and treatment of cardiovascular diseases are mainly focused on reduction of low-density lipoprotein cholesterol. However, these drugs do not provide sufficient protection against recurrent cardiovascular events. One of the possible mechanisms behind this recurrence might be the persistence of residual inflammation. For the most commonly used lipid-lowering drugs, the statins, their reduction of cardiovascular events goes beyond lowering of low-density lipoprotein cholesterol. Here, we review the effects of these lipid-lowering drugs on inflammation, considering statins, ezetimibe, fibrates, niacin, proprotein convertase subtilisin/kexin type 9 inhibitors, bempedoic acid, ethyl eicosapentaenoic acid and antisense oligonucleotides. We focus in particular on C-reactive protein, and discuss how the effects of the statins might be related to reduced rates of cardiovascular events.

8.
J Cardiovasc Dev Dis ; 9(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35877573

RESUMEN

Besides lipids, inflammation, angiogenesis, coagulation and fibrinolysis play very important roles in coronary artery disease (CAD). We measured gene expression of the inflammatory markers interleukin (IL)-1ß (IL1B) and interferon (IFN)-γ (IFNG), vascular endothelial growth factor-A (VEGF-A) (VEGFA), and coagulation and fibrinolysis markers tissue factor (TF) (F3) and plasminogen activator inhibitor-1 (PAI-1) (SERPINE) in healthy controls and CAD patients with high lipoprotein(a) (Lp(a)). The aim of our study was to identify, first, if there is a difference in these markers between controls and patients; secondly, if these markers are associated with lipids; and third, what the influence of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors is on these markers. We included 124 subjects, 27 controls and 97 patients with CAD (30 in placebo and 67 in the PCSK9 group). Blood samples were collected for lipid and gene measurement. The results showed higher expression of IL1B (p < 0.0001), VEGFA (p < 0.0001), and F3 (p = 0.018) in controls in comparison with patients. Significant correlations were observed between IL1B and lipids. Treatment with PCSK9 inhibitors increased VEGFA (p < 0.0001) and F3 (p = 0.001), and decreased SERPINE (p = 0.043). The results of our study underpin the importance of IL-1ß, VEGF-A and TF in CAD as well as the effect of PCSK9 treatment on these markers.

9.
J Cardiovasc Dev Dis ; 9(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35621838

RESUMEN

Chronic inflammation contributes significantly to the development and progression of atherosclerosis. However, the factors that lead to an inflammatory imbalance towards a proinflammatory state are not yet fully understood. The CRP rs1800947, TNFA rs1800629, and IL6 rs1800795 polymorphisms may play a role in the pathogenesis of atherosclerosis and were therefore selected to investigate the influence of genetic variability on the corresponding plasma levels after treatment with a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor. A group of 69 patients with stable coronary artery disease after myocardial infarction before the age of 50 years and very high lipoprotein(a) levels were enrolled in the study. All patients received a PCSK9 inhibitor (evolocumab or alirocumab). Genotyping was performed using TaqMan assays (CRP rs1800947, TNFA rs1800629, and IL6 rs1800795). Consistent with previous studies, no significant change in levels of inflammatory biomarkers was observed after 6 months of treatment with PCSK9 inhibitors. We also did not detect any significant association between single nucleotide polymorphisms CRP rs1800947, TNFA rs1800629, and IL6 rs1800795 and plasma levels of high-sensitivity C-reactive protein (hsCRP), tumor necrosis factor-α (TNF-α), or interleukin 6 (IL6), respectively, at enrollment. However, the difference in IL6 levels after treatment with PCSK9 inhibitors was statistically significant (p = 0.050) in patients with IL6-74CC genotype, indicating the possible role of the IL6 rs1800795 polymorphism in modulating inflammation.

10.
Atheroscler Plus ; 50: 1-9, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36643800

RESUMEN

Background and aims: Elevated lipoprotein (a) (Lp(a)) and low-density lipoprotein cholesterol levels (LDL-C) are significant residual risk factors for cardiovascular events. Treatment with protein convertase subtilisin kexin type 9 (PCSK9) inhibitors reduces the levels of both. Less is known about effects of PCSK9 inhibitors on functional and morphological properties of the arterial wall. The aim of the present study was to determine whether other factors besides decreased LDL-C and Lp(a) are associated with functional (flow-mediated dilation [FMD]) and morphological (carotid intima-media thickness [c-IMT], pulse-wave velocity [PWV]) changes of the arterial wall properties in patients with coronary artery disease (CAD) treated with alirocumab and evolocumab. Methods: One hundred patients with CAD after myocardial infarction before 55 years and with high Lp(a) were randomised to lipid-lowering therapies without PCSK9 inhibitors (control; N = 31), or with alirocumab 150 mg SC (N = 35) or evolocumab 140 mg SC (N = 34), every 2 weeks. All patients underwent blood sampling for biochemical analyses and ultrasound measurements for FMD, c-IMT and PWV. Results: There were no significant changes in FMD for the control (10.7% ± 6.6%-11.1% ± 4.4%, p = 0.716) and alirocumab (10.7% ± 5.9%-11.2% ± 5.3%, p = 0.547) groups, while evolocumab promoted significant increase (11.2% ± 6.8%-14.1% ± 6.6%, p < 0.0001). Only in non-smokers and non-diabetics significant improvements in FMD (p < 0.0001) after treatment with PCSK9 inhibitors were observed. Conclusion: These data show that for patients with CAD and high Lp(a) levels, beneficial effects of PCSK9 inhibitors on the arterial wall properties can be attenuated by specific risk factors, such as smoking and diabetes.

11.
J Cardiovasc Dev Dis ; 8(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34940537

RESUMEN

Lipoprotein(a) [Lp(a)] levels are an independent risk factor for coronary artery disease (CAD). Two single-nucleotide polymorphisms (rs10455872, rs3798220) and number of KIV-2 repeats in the gene encoding Lp(a) (LPA) are associated with Lp(a) and CAD. Our aim was to investigate whether in patients with stable CAD and high Lp(a) levels these genetic variants are associated with increased Lp(a) and arterial wall properties. Blood samples underwent biochemical and genetic analyses. Ultrasound measurements for the functional and morphological properties of arterial wall were performed. Genotypes of rs10455872 and haplotypes AT and GT showed significant association with Lp(a) levels. Patients with GG showed significantly higher Lp(a) levels compared with those with AG genotype (2180 vs. 1391 mg/L, p = 0.045). Patients with no AT haplotype had significantly higher Lp(a) compared to carriers of one AT haplotype (2158 vs. 1478 mg/L, p = 0.023) or two AT haplotypes (2158 vs. 1487 mg/L, p = 0.044). There were no significant associations with the properties of the arterial wall. Lp(a) levels significantly correlated also with number of KIV-2 repeats (r = -0.601; p < 0.0001). In our patients, these two LPA polymorphisms and number of KIV-2 repeats are associated with Lp(a), but not arterial wall properties.

12.
Ann Med ; 52(5): 162-177, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32453609

RESUMEN

Lipoprotein(a) (Lp(a)) was discovered more than 50 years ago, and a decade later, it was recognized as a risk factor for coronary artery disease. However, it has gained importance only in the past 10 years, with emergence of drugs that can effectively decrease its levels. Lp(a) is a low-density lipoprotein (LDL) with an added apolipoprotein(a) attached to the apolipoprotein B component via a disulphide bond. Circulating levels of Lp(a) are mainly genetically determined. Lp(a) has many functions, which include proatherosclerotic, prothrombotic and pro-inflammatory roles. Here, we review recent data on the role of Lp(a) in the atherosclerotic process, and treatment options for patients with cardiovascular diseases. Currently 'Proprotein convertase subtilisin/kexin type 9' (PCSK9) inhibitors that act through non-specific reduction of Lp(a) are the only drugs that have shown effectiveness in clinical trials, to provide reductions in cardiovascular morbidity and mortality. The effects of PCSK9 inhibitors are not purely through Lp(a) reduction, but also through LDL cholesterol reduction. Finally, we discuss new drugs on the horizon, and gene-based therapies that affect transcription and translation of apolipoprotein(a) mRNA. Clinical trials in patients with high Lp(a) and low LDL cholesterol might tell us whether Lp(a) lowering per se decreases cardiovascular morbidity and mortality.KEY MESSAGESLipoprotein(a) is an important risk factor in patients with cardiovascular diseases.Lipoprotein(a) has many functions, which include proatherosclerotic, prothrombotic and pro-inflammatory roles.Treatment options to lower lipoprotein(a) levels are currently scarce, but new drugs are on the horizon.


Asunto(s)
Aterosclerosis/fisiopatología , LDL-Colesterol/sangre , Lipoproteína(a)/sangre , Inhibidores de PCSK9 , Anticolesterolemiantes/uso terapéutico , Aterosclerosis/sangre , LDL-Colesterol/efectos de los fármacos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lipoproteína(a)/efectos de los fármacos , Proproteína Convertasa 9/farmacología , Medición de Riesgo
13.
Coron Artery Dis ; 26(8): 651-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26049922

RESUMEN

OBJECTIVE: Endothelial dysfunction is an independent predictor of atherosclerosis progression and cardiovascular events in patients with ischemic heart disease. Ranolazine and trimetazidine are novel drugs that reduce angina symptoms in the above-mentioned patients. The aim of this study was to compare the effects of ranolazine and trimetazidine on flow-mediated (FMD) and nitroglycerine-induced (GTN) dilation of the brachial artery. METHODS: In a prospective, double-blind study, 56 men between 32 and 65 years of age with chronic ischemic heart disease were randomized and subjected to 12 weeks of treatment with either trimetazidine (35 mg twice daily) or ranolazine. Ranolazine was administered at a dose of 375 mg twice daily for 4 weeks and was increased to 500 mg twice daily for the rest of the study. FMD and GTN were measured using high-resolution ultrasound before and after treatment. RESULTS: FMD increased from 3.5±7.4 to 13.8±9.4% (P<0.013; 294%) in the trimetazidine group and from 2.4±4.3 to 9.5±7.7% (P<0.037; 296%) in the ranolazine group, with no difference between the groups (P=0.444). GTN increased from 16.1±9.2 to 21.2±19.3% (P<0.022; 32%) in the trimetazidine group and from 13.8±9.6 to 21.7±13.7% (P<0.006; 57%) in the ranolazine group, with no difference between the groups (P=0.309). CONCLUSION: Both trimetazidine and ranolazine led to an improvement in FMD and GTN of the brachial artery in patients with ischemic heart disease, with no statistically significant difference between the groups.


Asunto(s)
Arteria Braquial/fisiopatología , Endotelio Vascular/fisiopatología , Isquemia Miocárdica/tratamiento farmacológico , Ranolazina/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Trimetazidina/uso terapéutico , Vasodilatación , Vasodilatadores/uso terapéutico , Adulto , Anciano , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Método Doble Ciego , Endotelio Vascular/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/fisiopatología , Nitroglicerina , Resultado del Tratamiento , Ultrasonografía Doppler
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA