Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766039

RESUMEN

Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.

2.
Cell Commun Signal ; 22(1): 120, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347585

RESUMEN

BACKGROUND: Breast cancer (BC) is the most frequent tumor entity in women worldwide with a high chance of therapeutic response in early- and non-metastatic disease stages. Among all BC subtypes, triple-negative BC (TNBC) is the most challenging cancer subtype lacking effective molecular targets due to the particular enrichment of cancer stem cells (CSCs), frequently leading to a chemoresistant phenotype and metastasis. The Ubiquitin Specific Peptidase 22 (USP22) is a deubiquitinase that has been frequently associated with a CSC-promoting function and intimately implicated in resistance to conventional therapies, tumor relapse, metastasis and overall poor survival in a broad range of cancer entities, including BC. To date, though, the role of USP22 in TNBC has been only superficially addressed. METHODS: The current study utilized the MMTV-cre, Usp22fl/fl transgenic mouse model to study the involvement of USP22 in the stem cell-like properties of the growing mammary tissue. Additionally, we combined high-throughput transcriptomic analyses with publicly available patient transcriptomic data and utilized TNBC culture models to decipher the functional role of USP22 in the CSC characteristics of this disease. RESULTS: Interestingly, we identified that USP22 promotes CSC properties and drug tolerance by supporting the oxidative phosphorylation program, known to be largely responsible for the poor response to conventional therapies in this particularly aggressive BC subtype. CONCLUSIONS: This study suggests a novel tumor-supportive role of USP22 in sustaining cellular respiration to facilitate the drug-tolerant behavior of HER2+-BC and TNBC cells. Therefore, we posit USP22 as a promising therapeutic target to optimize standard therapies and combat the aggressiveness of these malignancies. Video Abstract.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Respiración de la Célula , Modelos Animales de Enfermedad , Recurrencia Local de Neoplasia , Neoplasias de la Mama Triple Negativas/patología , Ubiquitina Tiolesterasa
3.
J Neuroinflammation ; 21(1): 62, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419079

RESUMEN

BACKGROUND: Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson's disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB). FINDINGS: The present study aims to evaluate the patho-physiological impact of α-syn AAbs on primary brain cells, i.e., on spontaneously active neurons and on astrocytes. Exposure of neuron-astrocyte co-cultures to human serum containing α-syn AAbs mediated a dose-dependent reduction of spontaneous neuronal activity, and subsequent neurodegeneration. Removal specifically of α-syn AAbs from the serum prevented neurotoxicity, while purified, commercial antibodies against α-syn mimicked the neurodegenerative effect. Mechanistically, we found a strong calcium flux into neurons preceding α-syn AAbs-induced cell death, specifically through NMDA receptors. NMDA receptor antagonists prevented neurodegeneration upon treatment with α-syn (auto)antibodies. α-syn (auto)antibodies did not affect astrocyte survival. However, in presence of α-syn, astrocytes reacted to α-syn antibodies by secretion of the chemokine RANTES. CONCLUSION: These findings provide a novel basis to explain how a combination of BBB impairment and infiltration of IgGs targeting synuclein may contribute to neurodegeneration in PD and argue for caution with α-syn immunization therapies for treatment of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Enfermedad de Parkinson/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Inmunoglobulinas/metabolismo
4.
Mol Cell ; 84(2): 345-358.e5, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199007

RESUMEN

Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Péptido Hidrolasas/metabolismo
5.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253420

RESUMEN

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Membranas Mitocondriales , Citoesqueleto , Membranas Asociadas a Mitocondrias , Proteínas de Drosophila/genética
6.
Basic Res Cardiol ; 118(1): 47, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930434

RESUMEN

Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.


Asunto(s)
Síndrome de Barth , Animales , Ratones , Síndrome de Barth/genética , Cistina , Antioxidantes , Ácidos Grasos , Glutamatos , Glutatión
7.
iScience ; 26(11): 108080, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37860693

RESUMEN

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-ß production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.

8.
Cell Death Dis ; 14(9): 641, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770435

RESUMEN

Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo
9.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37533404

RESUMEN

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Asunto(s)
Síndrome de Barth , Ratones , Animales , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis , Ácidos Grasos/metabolismo , Adenosina Trifosfato
10.
Biol Chem ; 404(8-9): 807-812, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37155927

RESUMEN

Most mitochondrial proteins are nuclear-encoded and imported by the protein import machinery based on specific targeting signals. The proteins that carry an amino-terminal targeting signal (presequence) are imported via the presequence import pathway that involves the translocases of the outer and inner membranes - TOM and TIM23 complexes. In this article, we discuss how mitochondrial matrix and inner membrane precursor proteins are imported along the presequence pathway in Saccharomyces cerevisiae with a focus on the dynamics of the TIM23 complex, and further update with some of the key findings that advanced the field in the last few years.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Transporte de Proteínas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo
11.
FEBS Lett ; 597(12): 1569-1578, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37247261

RESUMEN

Mitochondria are the powerhouses of the cell as they produce the majority of ATP with their oxidative phosphorylation (OXPHOS) machinery. The OXPHOS system is composed of the F1 Fo ATP synthase and four mitochondrial respiratory chain complexes, the terminal enzyme of which is the cytochrome c oxidase (complex IV) that transfers electrons to oxygen, generating water. Complex IV comprises of 14 structural subunits of dual genetic origin: while the three core subunits are mitochondrial encoded, the remaining constituents are encoded by the nuclear genome. Hence, the assembly of complex IV requires the coordination of two spatially separated gene expression machinery. Recent efforts elucidated an increasing number of proteins involved in mitochondrial gene expression, which are linked to complex IV assembly. Additionally, several COX1 biogenesis factors have been intensively biochemically investigated and an increasing number of structural snapshots shed light on the organization of macromolecular complexes such as the mitoribosome or the cytochrome c oxidase. Here, we focus on COX1 translation regulation and highlight the advanced understanding of early steps during COX1 assembly and its link to mitochondrial translation regulation.


Asunto(s)
Complejo IV de Transporte de Electrones , Proteínas de Saccharomyces cerevisiae , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 14(1): 2123, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37055412

RESUMEN

Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.


Asunto(s)
Peróxido de Hidrógeno , Mitocondrias , Ratones , Animales , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Metabolismo Energético , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
13.
Trends Cell Biol ; 33(9): 765-772, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36863885

RESUMEN

Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxidorreductasas , Humanos , Oxidorreductasas/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo
14.
Biol Open ; 12(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36861685

RESUMEN

Mitochondrial defects are associated with aging processes and age-related diseases, including cardiovascular diseases, neurodegenerative diseases and cancer. In addition, some recent studies suggest mild mitochondrial dysfunctions appear to be associated with longer lifespans. In this context, liver tissue is considered to be largely resilient to aging and mitochondrial dysfunction. Yet, in recent years studies report dysregulation of mitochondrial function and nutrient sensing pathways in ageing livers. Therefore, we analyzed the effects of the aging process on mitochondrial gene expression in liver using wildtype C57BL/6N mice. In our analyses, we observed alteration in mitochondrial energy metabolism with age. To assess if defects in mitochondrial gene expression are linked to this decline, we applied a Nanopore sequencing based approach for mitochondrial transcriptomics. Our analyses show that a decrease of the Cox1 transcript correlates with reduced respiratory complex IV activity in older mice livers.


Asunto(s)
Envejecimiento , Hígado , Ratones , Animales , Ratones Endogámicos C57BL , Envejecimiento/genética , Expresión Génica , Perfilación de la Expresión Génica
15.
EMBO Rep ; 24(5): e55760, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36938994

RESUMEN

Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.


Asunto(s)
Mitocondrias , Precursores de Proteínas , Fluorescencia , Transporte de Proteínas , Precursores de Proteínas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
16.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36156348

RESUMEN

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Asunto(s)
Calcio , Melanoma , Humanos , Calcio/metabolismo , Proteómica , Melanoma/genética , Melanoma/metabolismo , Oxidación-Reducción , Fenotipo , Línea Celular Tumoral
17.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35499078

RESUMEN

The relevance of molecular mechanisms governing mitochondrial proteostasis to the differentiation and function of hematopoietic and immune cells is largely elusive. Through dissection of the network of proteins related to HCLS1-associated protein X-1, we defined a potentially novel functional CLPB/HAX1/(PRKD2)/HSP27 axis with critical importance for the differentiation of neutrophil granulocytes and, thus, elucidated molecular and metabolic mechanisms underlying congenital neutropenia in patients with HAX1 deficiency as well as bi- and monoallelic mutations in CLPB. As shown by stable isotope labeling by amino acids in cell culture (SILAC) proteomics, CLPB and HAX1 control the balance of mitochondrial protein synthesis and persistence crucial for proper mitochondrial function. Impaired mitochondrial protein dynamics are associated with decreased abundance of the serine-threonine kinase PRKD2 and HSP27 phosphorylated on serines 78 and 82. Cellular defects in HAX1-/- cells can be functionally reconstituted by HSP27. Thus, mitochondrial proteostasis emerges as a critical molecular and metabolic mechanism governing the differentiation and function of neutrophil granulocytes.


Asunto(s)
Neutrófilos , Proteostasis , Proteínas Adaptadoras Transductoras de Señales/genética , Granulocitos/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Neutrófilos/metabolismo
18.
Mol Biol Cell ; 33(4): ar29, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080992

RESUMEN

Assembly of the dimeric complex III (CIII2) in the mitochondrial inner membrane is an intricate process in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process has yet to be fully understood. Here we report the identification of human OCIAD2 (ovarian carcinoma immunoreactive antigen-like protein 2) as an assembly factor for CIII2. OCIAD2 was found to be deregulated in several carcinomas and also in some neurogenerative disorders; however, its nonpathological role had not been elucidated.  We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII2 and supercomplex III2+IV, and a reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Carcinoma/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo
19.
Elife ; 102021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34969438

RESUMEN

Human mitochondria express a genome that encodes thirteen core subunits of the oxidative phosphorylation system (OXPHOS). These proteins insert into the inner membrane co-translationally. Therefore, mitochondrial ribosomes engage with the OXA1L-insertase and membrane-associated proteins, which support membrane insertion of translation products and early assembly steps into OXPHOS complexes. To identify ribosome-associated biogenesis factors for the OXPHOS system, we purified ribosomes and associated proteins from mitochondria. We identified TMEM223 as a ribosome-associated protein involved in complex IV biogenesis. TMEM223 stimulates the translation of COX1 mRNA and is a constituent of early COX1 assembly intermediates. Moreover, we show that SMIM4 together with C12ORF73 interacts with newly synthesized cytochrome b to support initial steps of complex III biogenesis in complex with UQCC1 and UQCC2. Our analyses define the interactome of the human mitochondrial ribosome and reveal novel assembly factors for complex III and IV biogenesis that link early assembly stages to the translation machinery.


Asunto(s)
Proteínas de la Membrana/metabolismo , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Proteínas Ribosómicas/genética , Citocromos b , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Biosíntesis de Proteínas , ARN Mensajero
20.
Nat Commun ; 12(1): 6530, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764281

RESUMEN

Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.


Asunto(s)
Endorribonucleasas/metabolismo , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Animales , Linfocitos T CD8-positivos/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Femenino , Citometría de Flujo , Genotipo , Humanos , Inmunohistoquímica , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Masculino , Células T de Memoria/metabolismo , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA