Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(21): 30806-30818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613757

RESUMEN

In this study, the effects of exogenous methyl jasmonate (MeJA) on metal uptake and its ability to attenuate metal toxicity in kenaf plants under Pb stress were investigated. The experiment was conducted with five different MeJA concentrations (0, 40, 80, 160, and 320 µM) as a foilar application to kenaf plants exposed to 200 µM Pb stress. The results revealed that pretreatmen of MeJA significantly increased plant dry weight, plant height, and root architecture at all concentrations tested, with the most significant increase at 320 µM. Foliar application of MeJA at 160 µM and 320 µM increased the Pb concentrations in leaves and stems as well as the translocation factor (TF) from root to leaf. However, the bioaccumulation factor in the shoot initially decreased and then increased with increasing MeJA concentration. By increasing enzymatic (SOD, POD, and CAT) and non-enzymatic (AsA and non-protein thiols) antioxidants, MeJA pretreatment decreased lipid peroxidation, O2- and H2O2 accumulation and recovered photosynthetic pigment content under Pb stress. Increased osmolytes (proline, sugar, and starch) and protein content after MeJA pretreatment under Pb stress restore cellular homeostasis and improved kenaf tolerance. Our results suggest that MeJA pretreatment modifies the antioxidant machinery of kenaf and inhibits stress-related processes that cause lipid peroxidation, hence enhancing plant tolerance to Pb stress.


Asunto(s)
Acetatos , Antioxidantes , Ciclopentanos , Hibiscus , Plomo , Oxilipinas , Antioxidantes/metabolismo , Plomo/toxicidad , Osmorregulación/efectos de los fármacos
2.
Environ Sci Pollut Res Int ; 31(14): 20772-20791, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393568

RESUMEN

Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.


Asunto(s)
Luz Verde , Plantas , Fenómenos Fisiológicos de las Plantas , Desarrollo de la Planta , Luz
3.
Sci Total Environ ; 912: 168956, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043817

RESUMEN

To solve the problem of excessive heavy metals in farmland soil, there is a dire need for research effort to screen for the soil passivator materials. This study aimed to develop a practical novel approach for improving the potato growth and remedial effectiveness of the metals by optimal combination and dosage of various passivators. Experimental treatments were comprised of various levels of passivating agents (sepiolite, quicklime and calcium magnesium phosphate) in individual and combined form. Results showed that application of passivating agents significantly enhanced growth by optimizing photosynthetic attributes, enzymatic antioxidants, and soil health. Balanced application of passivators effectively reduce the bioavailability of metals, curbing their uptake by potato plants. Sole application of all the agents results statistically similar outcomes as compared with combined form. Additionally, passivators indirectly enhance the activity of essential antioxidant enzymes. Synergistic effect of all the agents significantly improved the tuber quality by decreasing the accumulation of proline, malondialdehyde content, and bioaccumulation of Cu, Pb, Cd, and As in potato parts. In crux, combined usage of passivating agents proved to be of better growth, improvement in antioxidative defense system, and better quality of potato. By mitigating heavy metal contamination, passivators not only enhance crop quality and yield but also ensure heavy metal-free potatoes that meet stringent food safety standards.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum tuberosum , Suelo , Antioxidantes , Contaminantes del Suelo/análisis , Metales Pesados/análisis
4.
Plant Physiol Biochem ; 203: 108036, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738866

RESUMEN

Salt stress has emerged as a growing global concern, exerting a significant impact on agricultural productivity. The challenges of salt stress on potatoes are crucial for ensuring food security and sustainable agriculture. To address this issue a pot trial was executed to evaluate the impacts of NaCl in the soil on the growth, photosynthetic pigments, and quality attributes of potato, plants were grown in soil spiked with various concentrations of NaCl (0, 1, 3, 5, 7 g kg-1 of soil). Results revealed that salt stress have negative impacts on the growth, biomass, photosynthesis and quality attributes of potato. Lower level of salt stress 1 g kg-1 of soil improved the fresh and dry biomass of leaves (78.70 and 47.74%) and tubers (86.04 and 88.92%) as compared to control, respectively. Higher levels of salt stress (7 g kg-1) increased lipid peroxidation in leaves and improved the enzymatic antioxidants. It was observed that enzyme activities i.e., SOD (134.97%), POD (101.02%), and CAT (28.87%) increased in leaves and are inversely related to the NaCl concentration. The combination of reduction in chlorophyll contents and soluble sugars resulted in lower levels of quality attributes i.e., amylose (68.90%) and amylopectin (16.70%) of potato. Linear relationship in growth, biomass and physiological attributes showed the strong association with increased salt stress. Furthermore, the PCA-heatmap synergy offers identifying clusters of co-regulated attributes, which pinpoint the physiological responses that exhibit the strongest correlation with increasing salt stress levels. Findings indicate that potato can be grown successfully with (1 g kg-1 of NaCl in soil) without negative impacts on plant quality. Furthermore, this study contributes valuable insights into the complexities of salt stress on potato plants and provides a foundation for developing strategies to enhance their resilience in salt-affected environments.

5.
PeerJ ; 11: e15923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663286

RESUMEN

Background: Storage of potato tubers is an essential stage of the supply chain, from farm to consumer, to efficiently match supply and demand. However, the quality and yield of potatoes are influenced by physiological changes during storage. Methods: This study tested the physiological and biochemical indices in three potato varieties (YunSu 108, YunSu 304 and YunSu 306) during their dormancy periods. Results: Three potato varieties with different dormancy periods were used to follow changes in starch, protein and several enzymes during storage. The starch and sugar content of the long-dormant variety (YunSu 108, LDV) were stable, whereas those of the short-dormant variety (YunSu 306, SDV) were variable. Starch synthase activity in the three varieties was initially high, then decreased; the starch content of LDV was relatively stable, that of the medium-dormant variety (YunSu 304, MDV) increased with storage time and peaked at sprouting, and that of SDV was low but variable. The sucrose synthase activity of LDV was significantly higher (p < 0.05) than MDV and SDV in the middle storage period. Two spikes were observed in the invertase activity of SDV, whereas those of MDV and LDV were stable. The reducing sugar content of LDV increased significantly before sprouting, that of MDV slowly decreased and that of SDV dropped sharply. During the whole storage period, pectinase activity in LDV did not change significantly, whereas pectinase in MDV and SDV decreased. The cellulase and protein contents initially increased and then decreased in LDV, and steadily decreased in MDV and SDV. Conclusion: The metabolic indices related to starch and sugar in the LDV were relatively stable during storage, whereas those of the SDV varied greatly. SDV showed increased sucrose, reducing sugars and cellulose; LDV PCA plots clustered in the positive quadrant of PC1 and the negative quadrant of PC2, with increased protein, sucrose synthase and starch; MDV had increased soluble starch synthase.


Asunto(s)
Solanum tuberosum , Almidón Sintasa , Poligalacturonasa , Almidón , Sacarosa
6.
Plant Physiol Biochem ; 202: 107979, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37643556

RESUMEN

Ramie (Boehmeria nivea L.) is a highly valued fiber crop. Its yield is often limited by lack of available phosphate (Pi) in the soil, but the underlying molecular mechanisms of ramie's response to Pi deficiency remain largely unknown. To investigate how ramie adapts to low Pi stress, we selected a low Pi-tolerant variety (H-5) and a low Pi-sensitive variety (XYL), and conducted a biochemical and transcriptomic analysis on roots and leaves of both varieties. After subjecting the plants to Pi-deficient and Pi-sufficient conditions for 15 days, we found that H-5 exhibited higher dry weight, longer root systems, and higher levels of Pi, galactolipids, and organic acids when subjected to Pi deprivation, compared to XYL. Transcriptomic analysis further revealed that Pi-responsive genes involved in lipid metabolism, Pi transport, organic acid synthesis, and acid phosphatase activities were more induced in the tolerant variety H-5. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five hub genes, including phosphate transporter, SPX domain-containing protein and sulfoquinovosyl transferase, which played key roles in low Pi tolerance in ramie. The present study will broaden our comprehension of the differences and molecular mechanisms of different ramie cultivars in response to Pi starvation, and lay a foundation for future agronomic improvements in ramie and other fiber crops.


Asunto(s)
Boehmeria , Fosfatos , Transcriptoma/genética , Agricultura , Productos Agrícolas
7.
Environ Sci Pollut Res Int ; 30(38): 89638-89650, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454378

RESUMEN

Intercropping is considered a sustainable agricultural practice that can reduce the environmental impacts on agriculture. Our study investigated the morphology, physiology, and cadmium (Cd) and lead (Pb) uptake of kenaf (Hibiscus cannabinus L.) and soybean (Glycine max L.) under intercropping in mining soil. Results showed that mutual intercropping is conducive to the growth and biomass accumulation of kenaf and soybean, compared to their respective monoculture. Intercropping increased the relative chlorophyll index in kenaf, while that in soybean had no significant effect. Furthermore, intercropping increased the antioxidant enzyme activity of kenaf, while that of soybean reduced or had no significant effect. The content of malondialdehyde (MDA) was decreased in both of the species. Compared to their respective monoculture, Cd content was increased in kenaf leaves and reduced in soybean roots. Moreover, intercropping decreased the Pb content in tissues of both the species, except that Pb content of kenaf roots was increased. At the same time, root, leaf, or stem bioconcentration factors also performed the same trend, and TF was less than 1. These results indicated that intercropping can increase the plant growth and decrease the metal content in plant tissues. Present findings could provide support for future research on kenaf and soybean cultivation in contaminated lands. In addition, the present study strengthens our understanding about the effectiveness of intercropping system on heavy metal-contaminated lands for sustainable agricultural production.


Asunto(s)
Hibiscus , Contaminantes del Suelo , Cadmio/análisis , Glycine max , Antioxidantes , Plomo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Suelo , Raíces de Plantas/química
8.
Plant Sci ; 331: 111663, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36841339

RESUMEN

Soil heavy metal pollution is one of the most challenging problems. Kenaf is an important natural fiber crop with strong heterosis and a higher tolerance to heavy metals. However, little is known about the molecular mechanisms of kenaf heavy metal tolerance, especially the mechanism of genomic DNA methylation regulating heterosis. In this study, kenaf cultivars CP085, CP089, and their hybrid F1 seedlings were subjected to 300 µM cadmium stress and found obvious heterosis of cadmium resistance in morphology and antioxidant enzyme activity of F1 hybrid seedlings. Through methylation-sensitive amplification polymorphism (MSAP) analysis, we highlighted that the total DNA methylation level under cadmium decreased by 16.9 % in F1 and increased by 14.0 % and 3.0 % in parents CP085 and CP089, respectively. The hypomethylation rate was highest (21.84 %), but hypermethylation was lowest (17.24 %) in F1 compared to parent cultivars. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between F1 and its parents under cadmium. Furthermore, 21 differentially methylated DNA fragments (DMFs) were analyzed. Especially, the expression of NPF2.7, NADP-ME, NAC71, TPP-D, LRR-RLKs, and DHX51 genes were changed due to cadmium stress and related to cytosine methylation regulation. Finally, the knocked-down of the differentially methylated gene NPF2.7 by virus-induced gene silencing (VIGS) resulted in increased sensitivity of kenaf seedlings under cadmium stress. It is speculated that low DNA methylation levels can regulate gene expression that led to the heterosis of cadmium tolerance in kenaf.


Asunto(s)
Hibiscus , Metales Pesados , Metilación de ADN , Cadmio/toxicidad , Vigor Híbrido/genética , Epigénesis Genética
9.
Chemosphere ; 314: 137566, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563724

RESUMEN

Soil Cadmium (Cd) contamination has become a severe environmental problem around the world. Kenaf has great potential for utilization and phytoremediation of soil contaminated with heavy metal. Arbuscular mycorrhizal fungi (AMF) can help plants alleviate Cd stress, but the underlying mechanism remains completely unknown. In this study, kenaf was inoculated or not inoculated with AMF at cadmium concentrations of 10 mg kg-1 and 50 mg kg-1 from the seedling stage to the vigorous growth stage. The results showed that AMF symbionts improved nutrient transport efficiency and significantly improved plant growth. Additionally, AMF colonization increased cell wall polysaccharide content which help to bind Cd in the cell wall and reduced the transport of Cd to aboveground plant tissues. The increase in soil pH (6.9), total balcomycin and easily extractable balcomycin content facilitated the chelation of metal by mycorrhizal fungi and reduced the biological effectiveness of Cd. Furthermore, AMF upregulated the expression levels of key kenaf genes, such as Hc.GH3.1, Hc.AKR, and Hc.PHR1, which plays an important role in enhancing kenaf Cd tolerance. Our findings systematically revealed the mechanisms by which AMF responds to Cd stress in kenaf, inoculation of AMF with kenaf could be used to enhance the removal of Cd from soil pollution in mining areas by phytoremediation.


Asunto(s)
Hibiscus , Micorrizas , Contaminantes del Suelo , Micorrizas/metabolismo , Cadmio/análisis , Hibiscus/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis , Suelo/química
10.
Front Physiol ; 13: 1014190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36579021

RESUMEN

The cabbage aphid (Brevicoryne brassicae L.) is a devastating pest of cruciferous crops causing economic damage worldwide and notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphids. Spirotetramat is a novel insecticide used against sap-sucking insect pests, particularly aphids. This study evaluated the toxicity of spirotetramat to adult apterous B. brassicae after 72 h using the leaf dipping method. According to the toxicity bioassay results, the LC50 value of spirotetramat to B. brassicae was 1.304 mgL-1. However, the sublethal concentrations (LC5 and LC15) and transgenerational effects of this novel insecticide on population growth parameters were estimated using the age-stage, two-sex life table theory method. The sublethal concentrations (LC5; 0.125 mgL-1 and LC15; 0.298 mgL-1) of spirotetramat reduced the adult longevity and fecundity of the parent generation (F0). These concentrations prolonged the preadult developmental duration while decreasing preadult survival, adult longevity and reproduction of the F1 generation. The adult pre-reproductive period was also extended by spirotetramat treatment groups. Subsequently, the population growth parameters such as the intrinsic rate of increase r, finite rate of increase λ and net reproductive rate R 0 of the F1 generation were decreased in spirotetramat treatment groups whereas, the mean generation time T of the F1 generation was not affected when compared to the control. These results indicated the negative effect of sublethal concentrations of spirotetramat on the performance of B. brassicae by reducing its nymphal survival, extending the duration of some immature stages and suppressing the population growth of B. brassicae. Overall, we demonstrated that spirotetramat is a pesticide showing both sublethal activities, and transgenerational effects on cabbage aphid; it may be useful for implementation in IPM programs against this aphid pest.

11.
Front Plant Sci ; 13: 937436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720586

RESUMEN

One of the most important growth factors in cannabis cultivation is light which plays a big role in its successful growth. However, understanding that how light controls the industrial hemp growth and development is poor and needs advanced research. Therefore, a pot study was conducted to investigate the effects of different colors of light, that is, white light (WL), blue light (BL), red light (RL), and 50% red with 50% blue mix light (RBL) on morphology, gaseous exchange and antioxidant capacity of industrial hemp. Compared with WL, BL significantly increase hemp growth in terms of shoot fresh biomass (15.1%), shoot dry biomass (27.0%), number of leaves per plant (13.7%), stem diameter (10.2%), root length (6.8%) and chlorophyll content (7.4%). In addition, BL promoted net photosynthesis, stomatal conductance, and transpiration, while reduces the lipid peroxidation and superoxide dismutase and peroxidase activities. However, RL and RBL significantly reduced the plant biomass, gas exchange parameters with enhanced antioxidant enzymes activities. Thus, blue light is useful for large-scale sustainable production of industrial hemp.

12.
Front Microbiol ; 13: 915546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756018

RESUMEN

Root-knot nematode (Meloidogyne incognita) is the most widespread nematode affecting Solanaceae crops. Due to the lack of effective measures to control this nematode, its management can be achieved, using biocontrol agents. This study investigated in vitro efficacy of the antagonistic bacterial strain J211 isolated from tobacco rhizosphere soil against M. incognita, and further assessed its role in controlling nematodes, both in pot and field trials. Phylogenetic analysis of the 16S rRNA gene sequence of strain J211 assigned to Burkholderia arboris. Culture filtrates B. arboris J211 exhibited anematicidal activity against the second-stage juveniles (J2s) of M. incognita, with a 96.6% mortality after 24 h exposure. Inoculation of J211 in tobacco roots significantly reduced the root galling caused by M. incognita, both in pot and field trials. Meanwhile, plant growth-promoting (PGP) traits results showed that J211 had outstanding IAA-producing activity, and the IAA production reached 66.60 mg L-1. In the field study, B. arboris J211 also promoted tobacco growth and increase flue-cured tobacco yield by 8.7-24.3%. Overall, B. arboris J211 as a high-yielding IAA nematicidal strain effectively controlled M. incognita and improved tobacco yield making it a promising alternative bionematocide.

13.
Environ Sci Pollut Res Int ; 29(40): 60198-60211, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35414161

RESUMEN

Many species of devastating insect pests have acquired a high degree of resistance to insecticides in the field during the last few decades. Spodoptera exigua, for example, is the most damaging pests of economic crops with a worldwide spread. In a present study, the comparative growth, reproduction, and detoxification enzyme activity were evaluated along with exposure to three insecticides at low lethal doses of lufenuron, indoxacarb, and spinosad as compared to the control. Results indicate that the larval developmental time was significantly extended on lufenuron (21.5 ± 29 days) followed by indoxacarb (20.28 ± 0.24 days) and spinosad (19.74 ± 0.23 days) as compared to that on the control (18.13 ± 0.13 days). Similarly, the lowest number of eggs of S. exigua females were recorded on lufenuron (328.75 ± 50.81 eggs) followed by spinosad (367 ± 36.4 eggs) and indoxacarb (411.58 ± 42.38 eggs) as compared to that on the control (560.2 ± 13.47). Interestingly, the lowest intrinsic rate of increase (r) (0.121 ± 0.009) and highest mean generation time (T) (36.2 ± 0.35 days) were observed when larvae were treated to a low lethal concentration (LC20) of lufenuron as compared to that of indoxacarb, spinosad, and control. In addition, considerably lower activity of all detoxification enzymes in larvae was recorded on lufenuron after control as compared to that on indoxacarb and spinosad. Our study serves as a reference and basis for the toxicity and low lethal evaluation of lufenuron, indoxacarb, and spinosad on life table parameters and enzymatic properties in S. exigua, which may contribute to identifying targets for effective control of S. exigua.


Asunto(s)
Insecticidas , Animales , Femenino , Insecticidas/farmacología , Larva , Spodoptera
14.
Environ Sci Pollut Res Int ; 29(2): 1746-1762, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34709552

RESUMEN

The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.


Asunto(s)
Beta vulgaris , Insecticidas , Animales , Ecosistema , Resistencia a los Insecticidas , Insecticidas/farmacología , Larva , Spodoptera
15.
Environ Sci Pollut Res Int ; 28(38): 52832-52843, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34476693

RESUMEN

Rising human population has increased the utilization of available resources for food, clothes, medicine, and living space, thus menacing natural environment and mounting the gap between available resources, and the skills to meet human desires is necessary. Humans are satisfying their desires by depleting available natural resources. Therefore, multifunctional plants can contribute towards the livelihoods of people, to execute their life requirements without degrading natural resources. Thus, research on multipurpose industrial crops should be of high interest among scientists. Hemp, or industrial hemp, is gaining research interest because of its fastest growth and utilization in commercial products including textile, paper, medicine, food, animal feed, paint, biofuel, biodegradable plastic, and construction material. High biomass production and ability to grow under versatile conditions make hemp, a good candidate species for remediation of polluted soils also. Present review highlights the morphology, adaptability, nutritional constituents, textile use, and medicinal significance of industrial hemp. Moreover, its usage in environmental conservation, building material, and biofuel production has also been discussed.


Asunto(s)
Cannabis , Alérgenos , Animales , Biocombustibles , Biomasa , Humanos , Industrias
16.
Chemosphere ; 266: 128972, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33218736

RESUMEN

Copper (Cu) pollution in agricultural soils is considered as a serious health risk due to its accumulation in plants. Thus, there is an urgent need to optimize nutrient application for higher yield with lower Cu uptake to ensure food security. A pot experiment was conducted to investigate the effectiveness of nitrogen fertilizer (N) on Boehmeria nivea growth, gas exchange characteristics, antioxidant capacity and uptake of Cu in contaminated soil. Therefore, combinations of Cu levels (0, 100, 300 mg kg-1) and N levels (0, 140, 280, 420 kg ha-1) were applied. The results showed that N at 280 kg ha-1 significantly (≤0.05) increased plant growth in terms of fresh biomass, plant height, stem diameter and number of leaves per plant up to100 mg kg-1 Cu in soil for all harvests (H1, H2, H3 and H4). However, the interactive effect of Cu and N on Cu uptake by plant varied among N levels. Furthermore, N at 280 kg ha-1 also improved the gas exchange characteristics viz., net photosynthesis (Pn), transpiration rate (Tr) and stomatal conductance (gs), while decreased oxidative stress in B. nivea up to 100 mg kg-1 Cu in soil, relative to control. Thus N at 280 kg ha-1 can be considered as an effective dose for high fresh biomass with lower Cu uptake by B. nivea grown as fodder in Cu contaminated soils (≤100 mg kg-1). Overall, present research highlighted the necessity of balanced or optimum N application for sustainable B. nivea forage production in Cu contaminated agricultural lands.


Asunto(s)
Boehmeria , Contaminantes del Suelo , Biodegradación Ambiental , Biomasa , Cobre/análisis , Cobre/toxicidad , Nitrógeno , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
17.
Plant Physiol Biochem ; 157: 23-37, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33069978

RESUMEN

Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to rapid development of social economy. Silicon (Si), being an important fertilizer element, has been found effective in enhancing plant tolerance against biotic and abiotic stresses. The present study investigated the extent to which different levels of Si modulated the Cd tolerance of Ajwain (Trachyspermum ammi L.) seedlings when maintained in artificially Cd spiked regimes. A pot experiment was conducted under controlled conditions for four weeks, by using sand, mixed with different levels of Cd i.e., 0, 1.5 and 3 mM together with the application of Si at 0, 1.5 and 3 mM levels to monitor different growth, gaseous exchange, oxidative stress, antioxidative responses, minerals accumulation, organic acid exudation patterns of T. ammi seedlings. Our results depicted that Cd addition to growth medium significantly decreased plant growth and biomass, gaseous exchange attributes and minerals uptake by T. ammi seedlings as compared to the plants grown without addition of Cd. However, Cd toxicity boosted the production of reactive oxygen species (ROS) by increasing the contents of malondialdehyde (MDA), which is the indication of oxidative stress in T. ammi seedlings and was also manifested by hydrogen peroxide (H2O2) contents and electrolyte leakage to the membrane bounded organelles. Although, activities of various antioxidative enzymes like superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) initially increased up to a Cd level of 1.5 mM but were significantly diminished at the highest Cd level of 3 mM. Results revealed that the anthocyanin and soluble proteins contents were decreased in seedlings grown under elevating Cd levels but increased the Cd accumulation of T. ammi roots and shoots. The negative impacts of Cd injury were reduced by the application of Si which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, minerals uptake together with diminished exudation of organic acids as well as oxidative stress indicators in roots and shoots of T. ammi by decreasing Cd retention in different plant parts. Research findings, therefore, suggested that Si application can ameliorate Cd toxicity in T. ammi seedlings and resulted in improved plant growth and composition under metal stress as depicted by balanced exudation of organic acids.


Asunto(s)
Apiaceae/metabolismo , Cadmio/toxicidad , Silicio/farmacología , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Raíces de Plantas/metabolismo , Plantones/metabolismo
18.
Environ Sci Pollut Res Int ; 27(24): 30367-30377, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32462620

RESUMEN

Copper (Cu), with many documented cases of Cu toxicity in agriculture lands, is becoming an increasingly common issue in and elsewhere in China. However, fibrous crop such as jute is being used as phytoremediation candidate in Cu-contaminated soils due to its huge biomass. A pot experiment was conducted using four different varieties (HT, C-3, GC, and SH) of jute grown in highly Cu-contaminated soil (2221 mg kg-1), collected from Hubei Province, China. Results from this study showed that C-3 and HT were more resistant to Cu stress, while GC and SH had a serious effect due to high concentration of Cu and a significant decrease in growth and biomass. Furthermore, Cu in roots, leaves, stem core, and bast were higher in C-3 and HT compared with GC and SH. Likewise, at post-harvesting stage, maximum Cu concentration from Cu-contaminated soil was extracted by C-3 and HT while small amount was accumulated by GC and SH. The high content of malondialdehyde (MDA) in the leaves of GC and SH indicated that Cu induced oxidative damage while the antioxidative enzyme activities of superoxidase dismutase (SOD) and peroxidase (POD) were increased to scavenge reactive oxygen species (ROS) formed during oxidative stress in the plants. Conclusively, it can be identified that when grown in Cu-contaminated soil, C-3 and HT have greater ability to grow in polluted soils and possible phytoremediation materials to revoke a large amount of Cu.


Asunto(s)
Cobre/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Biomasa , China , Suelo
19.
Plants (Basel) ; 9(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079368

RESUMEN

Jute (Corchorus capsularis) is a widely cultivated fibrous species with important physiological characteristics including biomass, a deep rooting system, and tolerance to metal stress. Furthermore, Corchorus species are indigenous leafy vegetables and show phytoremediation potential for different heavy metals. This species has been used for the phytoremediation of different toxic pollutants such as copper (Cu), cadmium (Cd), zinc (Zn), mercury (Hg) and lead (Pb). The current literature highlights the physiological and morphological characteristics of jute that are useful to achieve successful phytoremediation of different pollutants. The accumulation of these toxic heavy metals in agricultural regions initiates concerns regarding food safety and reductions in plant productivity and crop yield. We discuss some innovative approaches to increase jute phytoremediation using different chelating agents. There is a need to remediate soils contaminated with toxic substances, and phytoremediation is a cheap, effective, and in situ alternative, and jute can be used for this purpose.

20.
Chemosphere ; 248: 126032, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32018110

RESUMEN

Soil in mining areas is typically highly contaminated with heavy metals and lack essential nutrients for plants. Phosphorus reduces oxidative stress, improves plant growth, composition, and cellular structure, as well as facilitates the phytoremediation potential of fibrous crop plant species. In this study, we investigated two jute (Corchorus capsularis) varieties HongTieGuXuan and GuBaChangJia cultivated in copper (Cu)-contaminated soil (2221 mg kg-1), under different applications of phosphorus (0, 30, 60, and 120 kg ha-1) at both anatomical and physiological levels. At the same Cu concentration, the tolerance index of HongTieGuXuan was higher than that of GuBaChangJia, indicating that HongTieGuXuan may be more tolerant to Cu stress. Although the normal concentration of P (60 kg ha-1) in the soil improved plant growth, biomass, chlorophyll content, fibre yield and quality, and gaseous exchange attributes. However, high concentration of P (120 kg ha-1) was toxic to both jute varieties affected morphological and physiological attributes of the plants under same level of Cu. Moreover, Cu toxicity increased the oxidative stress in the leaves of both jute varieties was overcome by the activities of antioxidant enzymes. Furthermore, the high concentration of Cu altered the ultrastructure of chloroplasts, plastoglobuli, mitochondria, and many other cellular organelles in both jute varieties. Thus, phytoextraction of Cu by both jute varieties increased with the increase in P application in the Cu-contaminated soil. This suggests that P application enhanced the phytoremediation potential jute plants and can be cultivated as fibrous crop in Cu-contaminated sites.


Asunto(s)
Cobre/aislamiento & purificación , Corchorus/metabolismo , Fósforo/farmacología , Contaminantes del Suelo/aislamiento & purificación , Antioxidantes/metabolismo , Biodegradación Ambiental , Clorofila/metabolismo , Cobre/toxicidad , Corchorus/citología , Corchorus/efectos de los fármacos , Corchorus/crecimiento & desarrollo , Enzimas/metabolismo , Fertilizantes , Minería , Orgánulos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...