Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Comput Biol Chem ; 113: 108218, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39378822

RESUMEN

Emerging antibiotic resistance in bacteria threatens immune efficacy and increases susceptibility to bone degradation and arthritic disorders. In our current study, we utilized a three-layer in-silico screening approach, employing quantum chemical methods, molecular docking, and molecular dynamic methods to explore the novel drug candidates similar in structure to floroquinolone (ciprofloxacin). We investigated the interaction of novel similar compounds of ciprofloxacin with both a bacterial protein S. aureus TyrRS (1JIJ) and a protein associated with gout arthritis Neutrophil collagenase (3DPE). UTIs and gout are interconnected through the elevation of uric acid levels. We aimed to identify compounds with dual functionality: antibacterial activity against UTIs and antirheumatic properties. Our screening based on several methods, sorted out six promising ligands. Four of these (L1, L2, L3, and L6) demonstrated favorable hydrogen bonding with both proteins and were selected for further analysis. These ligands showed binding affinities of -8.3 to -9.1 kcal/mol with both proteins, indicating strong interaction potential. Notably, L6 exhibited highest binding energies of -9.10 and -9.01 kcal/mol with S. aureus TyrRS and Neutrophil collagenase respectively. Additionally, the pkCSM online database conducted ADMET analysis on all lead ligand suggested that L6 might exhibit the highest intestinal absorption and justified total clearance rate. Moreover, L6 showed a best predicted inhibition constant with both proteins. The average RMSF values for all complex systems, namely L1, L2, L3 and L6 are 0.43 Å, 0.57 Å, 0.55 Å, and 0.51 Å, respectively where the ligand residues show maximum stability. The smaller energy gap of 3.85 eV between the HOMO and LUMO of the optimized molecule L1 and L6 suggests that these are biologically active compound. All the selected four drugs show considerable stabilization energy ranging from 44.78 to 103.87 kcal/mol, which means all four compounds are chemically and physically stable. Overall, this research opens exciting avenues for the development of new therapeutic agents with dual functionalities for antibacterial and antiarthritic drug designing.

2.
Sci Rep ; 14(1): 25489, 2024 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-39461989

RESUMEN

Brain tumors, particularly Glioblastoma Multiforme (GBM) and Low-Grade Gliomas (LGG), present significant clinical challenges due to their aggressive nature and resistance to conventional treatments. Traditional therapies such as surgery, chemotherapy, and radiation are often limited in efficacy, necessitating novel therapeutic strategies. Nanotechnology, particularly the use of silver nanoparticles (Ag NPs), offers a targeted and potentially more effective approach. This study focuses on the green synthesis of Ag NPs using Podocarpus macrophyllus leaf extract as a reducing agent. The synthesized Ag NPs were characterized for their physicochemical properties, demonstrating a controlled particle size of 13 nm as determined by scanning electron microscopy (SEM). Fourier-transform infrared (FTIR) spectroscopy confirmed the presence of functional groups, and energy-dispersive X-ray (EDX) spectroscopy revealed that silver constituted approximately 90% of the nanoparticle composition. The Ag NPs exhibited promising biological activity, including 90% free radical scavenging (antioxidant) activity, 99.15% inhibition of protein denaturation (anti-inflammatory activity), and 90.56% inhibition of alpha-amylase (anti-diabetic activity). Additionally, the nanoparticles displayed significant anti-hemolytic (89.9% inhibition) and antimicrobial activities, with a 20 mm inhibition zone against Staphylococcus species. Computational analyses further indicated that the NOTCH2 gene, which is upregulated in LGG and GBM, may interact with Ag NPs, suggesting their potential in brain cancer therapy. The green synthesis approach offers a sustainable and bioactive method for producing Ag NPs, underscoring their therapeutic promise for treating GBM and LGG.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Receptor Notch2 , Plata , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Receptor Notch2/metabolismo , Receptor Notch2/genética , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Tecnología Química Verde/métodos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/metabolismo , Línea Celular Tumoral , Hojas de la Planta/química
3.
Mhealth ; 10: 23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114458

RESUMEN

Background: Mobile health (m-Health) is widely acknowledged as a pivotal domain for improving global healthcare and driving its digital health transformation. Despite the vast amount of literature published in recent years, bibliometric studies on m-Health remain limited in scope and coverage. This study presents a comprehensive review of m-Health literature extracted from Scopus and PubMed databases, spanning the period from 1997 to 2023, including publications during the coronavirus disease 2019 (COVID-19) pandemic. Methods: The combined Scopus and PubMed databases were used in this study. The search formula for the literature retrieval used the most appropriate and relevant keywords to m-Health. The bibliometric data importation, extraction and analysis of authors, titles, publication date, publication place, publisher, volume number, issue number, citation count, document type, author keywords, affiliation were all carried out using the 'Biblioshiny', 'EndNote X9®', 'Microsoft Excel®' and 'Microsoft Access®' software tools. Duplicate records were manually identified and removed. Visualization maps illustrating the recurrent keywords, collaboration patterns, and prolific publishing countries were generated using 'VOSviewer®'. Results: A total of 37,470 (20,703 from Scopus and 16,767 from PubMed) publications were selected for the literature analysis. The results provided the definitive literature evidence on the origin of the concept of m-Health in 2003. Significant increase in the publications followed the global surge of smart phones usage in 2007, and the emergence of m-Health applications (Apps) and their global markets and ecosystems. The number of the publications peaked between 2013 and 2022 with most citations in 2022. There was noticeable spike in m-Health literature during the COVID-19 pandemic. The results also showed that most of the highly cited publications, leading institutions, and most prolific authors were predominantly from the developed countries. The USA has the highest number of publications followed by the UK, Australia, Germany, Canada and China, with most of the prolific authors originating from these countries. Conclusions: In conclusion, while there has been a remarkable increase in global m-Health publications since 2003, most of the impactful literature and publications in this area originated from selected countries in the developed world. The study indicates a significant disparity between the published literature from developed compared to the developing countries. Addressing this disparity, further bibliographical studies are required to address these and other literature gaps.

4.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125784

RESUMEN

Salt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition of wheat under salt stress, contains metabolites related to flavonoid biosynthesis. Wheat was treated with PDS solution under salt stress and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins were associated with protein metabolism and signal transduction in biological processes, as well as mitochondrion, endoplasmic reticulum/Golgi, and plasma membrane in cellular components with PDS solution under salt stress compared to control. Using immuno-blot analysis, proteomic results confirmed that ascorbate peroxidase increased with salt stress and decreased with additional PDS solution; however, H+-ATPase displayed opposite effects. Ubiquitin increased with salt stress and decreased with additional PDS solution; nevertheless, genomic DNA did not change. As part of mitochondrion-related events, the contents of ATP increased with salt stress and recovered with additional PDS solution. These results suggest that PDS solution enhances wheat growth suppressed by salt stress through the regulation of energy metabolism and the ubiquitin-proteasome system related to flavonoid metabolism.


Asunto(s)
Proteínas de Plantas , Proteómica , Estrés Salino , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Proteómica/métodos , Proteínas de Plantas/metabolismo , Metabolómica/métodos , Humo/efectos adversos , Proteoma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
5.
PLoS One ; 19(7): e0304757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990817

RESUMEN

Recent advancements in AI, driven by big data technologies, have reshaped various industries, with a strong focus on data-driven approaches. This has resulted in remarkable progress in fields like computer vision, e-commerce, cybersecurity, and healthcare, primarily fueled by the integration of machine learning and deep learning models. Notably, the intersection of oncology and computer science has given rise to Computer-Aided Diagnosis (CAD) systems, offering vital tools to aid medical professionals in tumor detection, classification, recurrence tracking, and prognosis prediction. Breast cancer, a significant global health concern, is particularly prevalent in Asia due to diverse factors like lifestyle, genetics, environmental exposures, and healthcare accessibility. Early detection through mammography screening is critical, but the accuracy of mammograms can vary due to factors like breast composition and tumor characteristics, leading to potential misdiagnoses. To address this, an innovative CAD system leveraging deep learning and computer vision techniques was introduced. This system enhances breast cancer diagnosis by independently identifying and categorizing breast lesions, segmenting mass lesions, and classifying them based on pathology. Thorough validation using the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) demonstrated the CAD system's exceptional performance, with a 99% success rate in detecting and classifying breast masses. While the accuracy of detection is 98.5%, when segmenting breast masses into separate groups for examination, the method's performance was approximately 95.39%. Upon completing all the analysis, the system's classification phase yielded an overall accuracy of 99.16% for classification. The potential for this integrated framework to outperform current deep learning techniques is proposed, despite potential challenges related to the high number of trainable parameters. Ultimately, this recommended framework offers valuable support to researchers and physicians in breast cancer diagnosis by harnessing cutting-edge AI and image processing technologies, extending recent advances in deep learning to the medical domain.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Diagnóstico por Computador , Mamografía , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/clasificación , Femenino , Mamografía/métodos , Diagnóstico por Computador/métodos , Detección Precoz del Cáncer/métodos
6.
Heliyon ; 10(13): e33949, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071554

RESUMEN

The development on entropy generation in fluid flows has applications in many medical equipment such as cryogenic devices and therapeutic heat apparatus. This study looks at how porous medium, multi-slips, and entropy formation affect the pumping of Jeffrey nanofluid flow through an asymmetric channel containing motile microorganims. A lubrication theory is used to neglect the fluctuation effects in the flow. Numerical simulations are utilized to generate data for specific physical features of the problem utilizing the Shooting approach on Mathematica. Following a thorough research, it is appropriate to conclude that the porous medium's permeability reduces flow speed along the walls while increases at the center of the flow region. Graphical representation of the results further reveals that entropy production can be decreased by including high thermal slip and low viscous slip elements. It is also worth noting that the Brinkman number reduces the thermal distribution in the flow while it helps in increasing the flow speed.

7.
Food Sci Nutr ; 12(6): 4038-4048, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873464

RESUMEN

Gallic acid is a widely recognized bioactive compound that falls under the category of secondary polyphenolic metabolites and is fairly found in mango fruit waste, specifically in mango seed kernel (MSK). This study aimed to adopt a green extraction approach to extract this valuable compound via ultrasound-assisted extraction (UAE) without using organic solvents but only water to obtain hazard-free extracts, and the cost of extraction can be minimal. pH (2-8), solvent ratio (20-60 mL/g), temperature (30-60°C) and time (30-60 min) of extraction were the independent variables used for extraction optimization. Single-factor experiments to obtain working ranges for selected extraction variables were carried out. A central composite design using response surface methodology was used to determine the optimum condition to obtain the maximum yield of gallic acid from MSK. The optimized extraction conditions were 3.9 pH, 36.25 mL/g solvent ratio, and 39.4°C of extraction temperature for 21.3 min. As a result, the optimized yield was 5.76 ± 0.41 mg/g, which was comparably equal to and/or better than the other solvent extraction systems. The results showed that gallic acid could efficiently be extracted via UAE under these optimal conditions. It is safer than extraction systems involving hazardous solvents that can be feasibly used for its nutraceutical and therapeutic applications.

8.
ACS Omega ; 9(20): 21805-21821, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799316

RESUMEN

Ranunculus hirtellus, also known as crowfoot (buttercup), has a rich tradition of use in various biological contexts. While antibacterial studies on extracts from this plant have been conducted, the phytochemical composition, antioxidant properties, and antidiabetic effects remain unexplored. In this study, the phytochemical, antioxidant, and antidiabetic effects of its methanol and aqueous extracts were investigated. Our approach involved gas chromatography-mass spectrometry (GC/MS), alongside quantitative and qualitative methods, for phytochemical profiles. Additionally, concerning biological activities, the antioxidant effect was assessed through 2, 2-diphenyl-pieryl hydrazyl (DPPH) and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) assays, while the antidiabetic effect was examined through the α-amylase inhibitory assay. The chloroform, ethyl acetate, and n-hexane extracts of R. hirtellus revealed the presence of 14 distinct compounds. In the methanol extract, sterols, quinones, glycosides, lactones, lignin, and flavonoids were identified. The aqueous extract contained sterols, alkaloids, glycosides, triterpenes, terpenoids, quinones, leucoanthocyanins, and lactones. The total flavonoid content (TFC), total phenolic content (TPC), total tannin content (TTC), and reducing sugar content (RDC) were determined in plant extracts, and a linear relationship was found between these parameters. Additionally, the TTC, TPC, and TFC values for both extracts hovered around 0.3786, 0.0476, and 0.1864 µg/mL, respectively, across all plant concentrations, while RDC ranged from 0.9336 to 1.0119 µg/mL in all four extracts. In vitro assays demonstrated dose-dependent antidiabetic activity in both methanolic and aqueous extracts by inhibiting α-amylase. Furthermore, the antioxidant activity observed in the DPPH assay was greater in the aqueous extract compared with the methanolic extract. In addition, the ethyl acetate extract exhibited the highest inhibition among chloroform and n-hexane in the ABTS assay. The results suggest that R. hirtellus can be a potential source of natural antioxidants and antidiabetic agents, and further studies are warranted to investigate the underlying mechanisms of its therapeutic effects.

9.
Int J Phytoremediation ; 26(10): 1676-1682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38702891

RESUMEN

Arsenic (As) is one of the most important water pollutant of global concern due to its extreme hazard. In the present study, B. subtilis synthesized iron oxide nanoparticles (Fe3O4 NPs) were used for mitigation of harmful metalloid As from the aqueous solution. Initially, the arsenic removal efficiency was tested in a batch culture experiment across various concentrations (5, 10 and 15 ppm) of B. subtilis synthesized Fe3O4 NPs at different pH, time interval and agitation speed. Optimal removal efficiency of As by using B. subtilis synthesized Fe3O4 NPs was observed at pH 7, after 80 min, and with agitation at 200 rpm. Additionally, hydroponic culture experiment was designed to assess B. subtilis synthesized Fe3O4 NPs efficiency in removal of As from As-contaminated water used to irrigate rice plants. Results revealed that B. subtilis synthesized Fe3O4 NPs effectively removed As from the contiminated water and reduced its uptake by the different parts of rice plants (root, shoot and leaf). Furthermore, these B. subtilis synthesized Fe3O4 NPs also reduced the bioaccumulation and enhanced plant tolerance to As, suggesting their potential in mitigating heavy metal toxicity, especially As and promoting plant growth. Thus, this study proposes B. subtilis synthesized Fe3O4 NPs as nano-adsorbents in reducing arsenic toxicity in rice plants.


Asunto(s)
Arsénico , Bacillus subtilis , Biodegradación Ambiental , Nanopartículas Magnéticas de Óxido de Hierro , Oryza , Contaminantes Químicos del Agua , Oryza/metabolismo , Arsénico/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacillus subtilis/efectos de los fármacos
10.
BMC Plant Biol ; 24(1): 221, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539080

RESUMEN

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.


Asunto(s)
Loratadina/análogos & derivados , Metales Pesados , Contaminantes del Suelo , Spinacia oleracea , Antioxidantes/metabolismo , Metales Pesados/toxicidad , Estrés Oxidativo , Bacterias/metabolismo , Suelo/química , Plantas/metabolismo , Nitrógeno/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
11.
Sci Rep ; 13(1): 22447, 2023 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105245

RESUMEN

Complex networks have been programmed to mimic the input and output functions in multiple biophysical algorithms of cortical neurons at spiking resolution. Prior research has demonstrated that the ineffectual features of membranes can be taken into account by discrete fractional commensurate, non-commensurate and variable-order patterns, which may generate multiple kinds of memory-dependent behaviour. Firing structures involving regular resonator chattering, fast, chaotic spiking and chaotic bursts play important roles in cortical nerve cell insights and execution. Yet, it is unclear how extensively the behaviour of discrete fractional-order excited mechanisms can modify firing cell attributes. It is illustrated that the discrete fractional behaviour of the Izhikevich neuron framework can generate an assortment of resonances for cortical activity via the aforesaid scheme. We analyze the bifurcation using fragmenting periodic solutions to demonstrate the evolution of periods in the framework's behaviour. We investigate various bursting trends both conceptually and computationally with the fractional difference equation. Additionally, the consequences of an excitable and inhibited Izhikevich neuron network (INN) utilizing a regulated factor set exhibit distinctive dynamic actions depending on fractional exponents regulating over extended exchanges. Ultimately, dynamic controllers for stabilizing and synchronizing the suggested framework are shown. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción/fisiología , Neuronas/fisiología , Biofisica , Redes Neurales de la Computación
12.
ACS Omega ; 8(37): 33358-33366, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744851

RESUMEN

Recently, nanobiotechnology has attracted a lot of attention, as it is a rapidly emerging field that is still growing and developing efficient and advanced therapeutic protocols under the umbrella of nanomedicine. It can revolutionize solutions to biomedical problems by developing effective treatment protocols and therapeutics. However, focus and research are still required to make these therapeutics more effective and safer to use. In this study, iron oxide nanoparticles were synthesized from Madhuca indica extract using green synthesis protocols. The nanoparticles were further characterized based on their absorption spectrum, size, structural morphology, and other related parameters. Biological assays were also performed to evaluate biological applications for the synthesized nanoparticles. In silico analysis was performed to assess the druglike properties of synthesized nanoparticles. The results proved an optimized synthesis of the iron oxide nanoparticles with the size of 56 nm confirmed by SEM. The FTIR analysis predicted the presence of nitro and carbonyl groups in the synthesized nanoparticles. The 81% DPPH inhibition confirmed the antioxidant activity, and the 96.20% inhibition of egg albumin protein confirmed the anti-inflamatory activity. Additionally, the 73.26% inhibition of α-amylase, which was more than that of the control used, confirmed the antidiabetic activity. The ADMET analysis confirmed the synthesized nanoparticles as potential therapeutic candidates as well. However, further evaluation for safety concerns is still required to use these FeONPs as potential therapeutic agents. This study can be proved as a significant contribution to the scientific community and a gateway to the future scientists who are willing to work on nanomedicine and nanobiotechnology. ADMET analysis confirmed the synthesized nanoparticles as potential therapeutic candidates as well. However, further evaluation for safety concerns is still required to use these FeONPs and potential therapeutic agents.

13.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762035

RESUMEN

Salt stress of soybean is a serious problem because it reduces plant growth and seed yield. To investigate the salt-tolerant mechanism of soybean, a plant-derived smoke (PDS) solution was used. Three-day-old soybeans were subjected to PDS solution under 100 mM NaCl for 2 days, resulting in PDS solution improving soybean root growth, even under salt stress. Under the same condition, proteins were analyzed using the proteomic technique. Differential abundance proteins were associated with transport/formaldehyde catabolic process/sucrose metabolism/glutathione metabolism/cell wall organization in the biological process and membrane/Golgi in the cellular component with or without PDS solution under salt stress. Immuno-blot analysis confirmed that osmotin, alcohol dehydrogenase, and sucrose synthase increased with salt stress and decreased with additional PDS solution; however, H+ATPase showed opposite effects. Cellulose synthase and xyloglucan endotransglucosylase/hydrolase increased with salt and decreased with additional PDS solution. Furthermore, glycoproteins decreased with salt stress and recovered with additional treatment. As mitochondrion-related events, the contents of ATP and gamma-aminobutyric acid increased with salt stress and recovered with additional treatment. These results suggest that PDS solution improves the soybean growth by alleviating salt stress. Additionally, the regulation of energy metabolism, protein glycosylation, and cell wall construction might be an important factor for the acquisition of salt tolerance in soybean.


Asunto(s)
Glycine max , Humo , Proteómica , Estrés Salino , Semillas
14.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570673

RESUMEN

The present study was designed to evaluate the in vitro and in silico potential of the Schiff bases (Z)-4-ethoxy-N-((5-nitrothiophen-2-yl)methylene)benzenamine (1) and (Z)-2,4-diiodo-6-((2-methyl-3-nitrophenylimino)methyl)phenol (2). These Schiff bases were synthesized according to a reported method using ethanol as a solvent, and each reaction was monitored on a TLC until completion of the reaction. The structures of both compounds were elucidated using spectroscopic techniques such as UV-Vis, FTIR, 1H NMR and 13C NMR. Molecular structure was determined using single-crystal XRD, which revealed that compounds 1 and 2 were monoclinic and triclinic, respectively. Hirshfeld surface analysis (HS) and 2D fingerprint plots were used to determine the intermolecular interactions along the contact contribution in the crystalline molecules. The structures of both compounds were optimized through a hybrid functional method B3LYP using the 6-31G(d,p) basis set, and various structural parameters were studied. The experimental and theoretical parameters (bond angle and bond length) of the compounds were compared with each other and are in close agreement. The in vitro esterase potential of the synthesized compounds was checked using a spectrophotometric model, while in silico molecular docking studies were performed with AutoDock against two enzymes of the esterase family. The docking studies and the in vitro assessment predicted that such molecules could be used as enzyme inhibitors against the tested enzymes: acetylcholine esterase (AChE) and butyrylcholine esterase (BChE).


Asunto(s)
Inhibidores Enzimáticos , Bases de Schiff , Simulación del Acoplamiento Molecular , Cristalografía por Rayos X , Bases de Schiff/química , Espectroscopía de Resonancia Magnética , Esterasas
15.
Plants (Basel) ; 12(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37514219

RESUMEN

The present study was designed to investigate and compare the effects of plant-derived smoke (PDS) and auxin (IAA and IBA) on maize growth under the application of 2,3,5-triiodo benzoic acid (TIBA). For this purpose, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), each at a concentration of 10 ppm, along with PDS at a ratio of 1:500 (v/v) were used alone and in combination with 10 ppm of TIBA. The results indicate that the germination percentage (%) of maize seeds was enhanced under IAA, IBA and PDS treatment. However, IAA and IBA resulted in reduced germination when applied in combination with TIBA. Importantly, the germination percentage (%) was improved by PDS under TIBA treatment. The analysis of seedling height, length of leaves, and number of primary, seminal and secondary/lateral roots showed improvement under individual treatments of IAA and IBA, PDS and PDS + TIBA treatment, while these values were reduced under IAA + TIBA and IBA + TIBA application. Chlorophyll content, total soluble sugars and antioxidative enzymatic activity including POD and SOD increased in seedlings treated with PDS alone or both PDS and TIBA, while in seedlings treated with IAA and TIBA or IBA and TIBA, their levels were decreased. APX and CAT responded in the opposite way-under IAA, IBA and PDS treatment, their levels were found to be lower than the control (simple water treatment), while TIBA treatment with either IAA, IBA or PDS enhanced their levels as compared to the control. These results reveal that PDS has the potential to alleviate the inhibitory effects of TIBA. This study highlights the role of PDS in preventing TIBA from blocking the auxin entry sites.

16.
Heliyon ; 9(7): e18033, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483772

RESUMEN

Traumatic brain injury (TBI) is the major and leading cause of mortality and an alarming public health challenge. TBI leads to permanent cognitive, motor, sensory and psychotic disabilities. Patients suffering from the various and long-term repercussions of TBI currently have limited therapy choices. The current research work was designed to evaluate the beneficial and neuroprotective role of Troxerutin (Trox) (a natural flavonoid) in a closed brain injury mouse model. The male BALB/c 8-weeks old mice (n꞊150) were randomly distributed in three experimental groups. Control group of mice (n꞊50), TBI group (n꞊50) and Trox pre-treated mice group (Trox + TBI, n꞊50). The mice in Trox + TBI were pre-treated with Trox (150 mg/kg, 7 days) before TBI. The weight-drop mechanism was used to induce mild-moderate injury in mice in both the groups. Our results showed that the mice pre-treated with troxerutin significantly improved neurological severity score, blood glucose level, food intake and brain edema as compared to the mice in the TBI group. Furthermore, compared to the TBI group, the mice treated with troxerutin improved cognitive behavior as evaluated by Open field test, Shallow Water Maze and Y-Maze, decreased brain-infarct volume and blood-brain barrier (BBB) permeability, significantly decreased Reactive Oxygen Species (ROS), improved neuronal morphology and survival in the brain regions such as cortex and hippocampus. In summary, our data provided evidence that pre-treatment with troxerutin improved neurological functions, decreased the BBB permeability, improved behavior, reduced ROS and increased neuronal survival in the weight-drop close head traumatic injury mouse model.

17.
Plants (Basel) ; 12(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299064

RESUMEN

Invasive plant species possess remarkable abilities to establish themselves in new environments and to displace native species. Their success can be attributed to various physiological and biochemical mechanisms, allowing them to tolerate adverse environmental conditions, including high lead (Pb) toxicity. Comprehension of the mechanisms responsible for Pb tolerance in invasive plants is still limited, but it is rapidly evolving. Researchers have identified several strategies in invasive plants to tolerate high levels of Pb. This review provides an overview of the current understanding of the ability of invasive species to tolerate or even accumulate Pb in plant tissues, including vacuoles and cell walls, as well as how rhizosphere biota (bacteria and mycorrhizal fungi) help them to enhance Pb tolerance in polluted soils. Furthermore, the article highlights the physiological and molecular mechanisms regulating plant responses to Pb stress. The potential applications of these mechanisms in developing strategies for remediating Pb-contaminated soils are also discussed. Specifically, this review article provides a comprehensive understanding of the current status of research on the mechanisms involved in Pb tolerance in invasive plants. The information presented in this article may be useful in developing effective strategies for managing Pb-contaminated soils, as well as for developing more resilient crops in the face of environmental stressors.

18.
ACS Omega ; 8(23): 20920-20936, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323409

RESUMEN

The problem of multidrug resistance in bacterial pathogens is significant and is related to the high morbidity and death rates of living things due to increased levels of beta-lactamases. Plant-derived nanoparticles have gained a great significance in the field of science and technology to combat bacterial diseases, especially multidrug-resistant bacteria. This study examines the multidrug resistance and virulent genes of identified pathogenic Staphylococcus species obtained from Molecular Biotechnology and Bioinformatics Laboratory (MBBL), culture collection. The polymerase chain reaction-based characterization of Staphylococcus aureus and Staphylococcus argenteus having ON875315.1 and ON876003.1 accession IDs revealed the presence of the spa, LukD, fmhA, and hld genes. The green synthesis of silver nanoparticles (AgNPs) was carried out by utilizing the leaf extract of Calliandra harrisii, of which metabolites act as capping and reducing agents for the precursor of nano-synthesis, i.e., AgNO3 of 0.25 M. The synthesized AgNPs were characterized via UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analysis which inferred the bead-like shape of our nanoparticles with the size of 2.21 nm with the existence of aromatic and hydroxyl functional groups at surface plasmon resonance of 477 nm. The antimicrobial activity by AgNPs showed 20 mm inhibition of Staphylococcus species as compared to the vancomycin and cefoxitin antibiotics along with crude plant extract, which showed a minimum zone of inhibition. The synthesized AgNPs were also analyzed for various biological activities like anti-inflammatory with 99.15% inhibition in protein denaturation, antioxidant with 99.8% inhibition in free radical scavenging, antidiabetic with 90.56% inhibition of alpha amylase assay, and anti-haemolytic with 89.9% inhibition in cell lysis which shows good bioavailability and biocompatibility of the nanoparticles with the biological system of the living being. The amplified genes (spa, LukD, fmhA, and hld) were also analyzed for their interaction with AgNPs computationally at the molecular level. The 3-D structure of AgNP and amplified genes was retrieved from ChemSpider (ID: 22394) and Phyre2 online server, respectively. The binding affinities of AgNP with spa, LukD, fmhA, and hld were -7.16, -6.5, -6.45, and -3.3 kJ/mol, respectively, which infers a good docking score except of hld which is -3.3 kJ/mol due to its small size. The salient features of biosynthesized AgNPs proved to be an effective approach in combating the multidrug-resistant Staphylococcus species in the future.

19.
Comput Biol Chem ; 104: 107880, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196604

RESUMEN

Molecular modeling strategy was adopted to check the biological potential of the imine based molecules against free radical, acetylcholine esterase and butyrylcholine esterase. Three Schiff based compounds as (E)-2-(((4-bromophenyl)imino)methyl)-4-methylphenol (1), (E)-2-(((3-fluorophenyl)imino)methyl)-4-methylphenol (2) and (2E,2E)-2-(2-(2-hydroxy-5-methylbenzylidene)hydrazono)-1,2-diphenylethanone (3) were synthesized with high yield. The synthesized compounds were characterized with the help of modern techniques such as UV, FTIR and NMR while exact structure was depicted with Single Crystal X-Ray diffraction technique which disclosed that compound 1 is orthorhombic, while 2 and 3 are monoclinic. A hybrid functional (B3LYP) method with general basis set of 6-31 G(d,p) were applied to optimize synthesized Schiff bases. The contribution of in-between molecular contacts within a crystalline assembly of compounds were studied using Hirshfeld surface analysis (HS). In order to check the ability of the synthesized compounds toward free radical and enzyme inhibition, in vitro models were used to assess the radical scavenging and enzyme inhibition potential which depicted that compound 3 showed highest potential (57.43 ± 1.0%; DPPH, 75.09 ± 1.0%; AChE and 64.47 ± 1.0%; BChE). The ADMET assessments suggested the drug like properties of the synthesized compounds. It was concluded from results (in vitro and in silico) that synthesized compound have ability to cure the disorder related to free radical and enzyme inhibition. Compound 3 was shown to be the most active compared to other compounds.


Asunto(s)
Antioxidantes , Iminas , Iminas/farmacología , Iminas/química , Antioxidantes/farmacología , Antioxidantes/química , Esterasas , Bases de Schiff/farmacología , Bases de Schiff/química , Simulación por Computador , Simulación del Acoplamiento Molecular
20.
World J Microbiol Biotechnol ; 39(7): 176, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115313

RESUMEN

Due to an inevitable disadvantage of chemical or physical synthesis routes, biosynthesis approach to nanoparticles, especially metallic oxide is attractive nowadays. Metallic oxides nanoparticles present a new approach to the control of plant pathogens. ZnO nanoparticles (ZNPs) have very important role in phytopathology. In current study, biosynthesized ZNPs were tested against two devastating bacterial pathogens including Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. ZNPs were produced using a new extract from the plant Picea smithiana using an environmentally friendly, cost-effective and simple procedure. Zinc acetate was added to P. smithiana extract, stirred and heated to 200 °C. The white precipitation at the bottom were clear indication of synthesis of nanoparticles, which were further dried by subjecting them at 450 °C. X-ray diffraction pattern determined that the ZNPs had a crystallite size of about 26 nm, Fourier transform infrared spectroscopy indicated a peak between 450 and 550 cm-1 and the particle size estimated by dynamic light scattering was about 25 nm on average. Scanning electron microscopic analysis indicated that the particles were hexagonal in shape 31 nm in diameter. Antibacterial tests showed ZNPs synthesized by P. smithiana resulted in clear inhibition zones of 20.1 ± 1.5 and 18.9 ± 1.5 mm and 44.74 and 45.63% reduction in disease severity and 78.40 and 80.91% reduction in disease incidence in X. compestris pv. vesicatoria and R. solanacearum respectively at concentration of 100 µg/ml. Our findings reveal that the concentration of ZNPs was important for their efficient antibacterial activity. Overall, the biosynthesized ZNPs have been found to have effective antimicrobial activities against bacterial wilt and bacterial leaf spot in tomato.


Asunto(s)
Nanopartículas del Metal , Picea , Ralstonia solanacearum , Solanum lycopersicum , Xanthomonas campestris , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...