Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 15(2): 2271597, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37876025

RESUMEN

Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.


Asunto(s)
Disentería Bacilar , Microbioma Gastrointestinal , Shigella , Cobayas , Humanos , Animales , Conejos , Ratones , Disentería Bacilar/microbiología , Modelos Animales de Enfermedad , Shigella flexneri , Ácido Ascórbico , Mamíferos
2.
Hum Mol Genet ; 25(11): 2314-2323, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27146843

RESUMEN

Loss of function mutations in human Oligophrenin1 (OPHN1) gene are responsible for syndromic intellectual disability (ID) associated with cerebellar hypoplasia and cerebral ventricles enlargement. Functional studies in rodent models suggest that OPHN1 linked ID is a consequence of abnormal synaptic transmission and shares common pathophysiological mechanisms with other cognitive disorders. Variants of this gene have been also identified in autism spectrum disorder and schizophrenia. The advanced understanding of the mechanisms underlying OPHN1-related ID, allowed us to develop a therapeutic approach targeting the Ras homolog gene family, member A (RHOA) signalling pathway and repurpose Fasudil- a well-tolerated Rho Kinase (ROCK) and Protein Kinase A (PKA) inhibitor- as a treatment of ID. We have previously shown ex-vivo its beneficial effect on synaptic transmission and plasticity in a mouse model of the OPHN1 loss of function. Here, we report that chronic treatment in adult mouse with Fasudil, is able to counteract vertical and horizontal hyperactivities, restores recognition memory and limits the brain ventricular dilatation observed in Ophn1-/y However, deficits in working and spatial memories are partially or not rescued by the treatment. These results highlight the potential of Fasudil treatment in synaptopathies and also the need for multiple therapeutic approaches especially in adult where brain plasticity is reduced.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Encéfalo/fisiopatología , Proteínas del Citoesqueleto/genética , Proteínas Activadoras de GTPasa/genética , Discapacidad Intelectual/tratamiento farmacológico , Proteínas Nucleares/genética , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/administración & dosificación , Adulto , Animales , Trastorno del Espectro Autista , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Ratones , Transmisión Sináptica
3.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130160, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24298161

RESUMEN

Loss-of-function mutations in the gene encoding for the RhoGAP protein of oligophrenin-1 (OPHN1) lead to cognitive disabilities (CDs) in humans, yet the underlying mechanisms are not known. Here, we show that in mice constitutive lack of Ophn1 is associated with dysregulation of the cyclic adenosine monophosphate/phosphate kinase A (cAMP/PKA) signalling pathway in a brain-area-specific manner. Consistent with a key role of cAMP/PKA signalling in regulating presynaptic function and plasticity, we found that PKA-dependent presynaptic plasticity was completely abolished in affected brain regions, including hippocampus and amygdala. At the behavioural level, lack of OPHN1 resulted in hippocampus- and amygdala-related learning disabilities which could be fully rescued by the ROCK/PKA kinase inhibitor fasudil. Together, our data identify OPHN1 as a key regulator of presynaptic function and suggest that, in addition to reported postsynaptic deficits, loss of presynaptic plasticity contributes to the pathophysiology of CDs.


Asunto(s)
Proteínas del Citoesqueleto/deficiencia , Proteínas Activadoras de GTPasa/deficiencia , Discapacidades para el Aprendizaje/genética , Plasticidad Neuronal/fisiología , Proteínas Nucleares/deficiencia , Terminales Presinápticos/fisiología , Transducción de Señal/fisiología , Animales , Western Blotting , Condicionamiento Psicológico , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/genética , Estimulación Eléctrica , Proteínas Activadoras de GTPasa/genética , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/genética
4.
Proc Natl Acad Sci U S A ; 110(40): 16223-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24046366

RESUMEN

Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning.


Asunto(s)
Cerebelo/citología , Vías Eferentes/citología , Núcleo Olivar/citología , Células de Purkinje/fisiología , Animales , Channelrhodopsins , Inmunohistoquímica , Ratones , Ratones Transgénicos , Optogenética , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA