Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Oncol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253995

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRASG12C mutated allele, which show encouraging results in clinical trials. However, the development of resistance necessitates exploring potent combination therapies. Our objective was to identify effective KRASG12C-inhibitor combination therapies through unbiased drug screening. Results revealed synergistic effects with son of sevenless homolog 1 (SOS1) inhibitors, tyrosine-protein phosphatase non-receptor type 11 (PTPN11)/Src homology region 2 domain-containing phosphatase-2 (SHP2) inhibitors, and broad-spectrum multi-kinase inhibitors. Validation in a novel and unique KRASG12C-mutated patient-derived organoid model confirmed the described hits from the screening experiment. Our findings propose strategies to enhance KRASG12C-inhibitor efficacy, guiding clinical trial design and molecular tumor boards.

2.
Lancet Gastroenterol Hepatol ; 9(10): 935-943, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159648

RESUMEN

BACKGROUND: A standardised dose-reduction strategy has not been established for the widely used gemcitabine plus nab-paclitaxel regimen in patients with metastatic pancreatic ductal adenocarcinoma. We aimed to investigate the efficacy and tolerability of alternating treatment cycles of nab-paclitaxel-gemcitabine combination therapy and gemcitabine alone versus continuous treatment with the nab-paclitaxel-gemcitabine combination. METHODS: ALPACA was a randomised, open-label, phase 2 trial conducted at 29 study centres across Germany. Patients aged 18 years or older with a histologically or cytologically confirmed diagnosis of metastatic pancreatic ductal adenocarcinoma who had not been previously treated for advanced disease were enrolled. After an induction phase with three cycles of nab-paclitaxel-gemcitabine combination therapy (nab-paclitaxel 125 mg/m2 and gemcitabine 1000 mg/m2 administered intravenously on days 1, 8, and 15 of each 28-day cycle), patients were randomly assigned (1:1) by stratified permuted block randomisation either to continue treatment with standard nab-paclitaxel-gemcitabine or to receive alternating cycles of nab-paclitaxel-gemcitabine and gemcitabine alone. Patients and investigators were not masked to treatment allocation. Randomisation was done centrally by the study statistician using a computer-generated randomisation list, and was stratified by Karnofsky Performance Status and presence of liver metastases. The primary endpoint was the derivation of an unbiased point estimate and an associated confidence interval with a confidence coefficient of 80% for the hazard ratio (HR) for overall survival after randomisation, without testing a specific hypothesis, analysed by intention to treat in all patients who started randomised treatment. Safety was analysed according to treatment received. This trial is registered with ClinicalTrials.gov, NCT02564146, and is completed. FINDINGS: Between May 27, 2016, and May 27, 2021, 325 patients were enrolled. Following three cycles of induction treatment, 174 patients were randomly assigned: 85 to continue receiving standard nab-paclitaxel-gemcitabine, of whom 79 started treatment, and 89 to the alternating treatment schedule, of whom 88 started treatment. Of the 167 patients who started randomised treatment, 88 (53%) were female and 79 (47%) were male. Median overall survival after randomisation was 10·4 months (80% CI 9·2-12·0) in the group that received standard treatment and 10·5 months (10·2-11·1) in the group that received alternating treatment (HR 0·90, 80% CI 0·72-1·13; p=0·56). The most common adverse events of any grade were peripheral neuropathy (59 [74%] of 80 patients in the continuous treatment group vs 53 [62%] of 85 patients in the alternating treatment group) and fatigue (43 [54%] vs 44 [52%]). Treatment-emergent serious adverse events after randomisation occurred in 40 (50%) patients in the continuous treatment group and in 28 (33%) in the alternating treatment group. Fewer treatment-emergent adverse events of grade 3 or higher occurred in patients treated with alternating cycles compared with those receiving standard therapy, especially for peripheral neuropathy (17 [21%] patients in the continuous treatment group vs 12 [14%] in the alternating treatment group) and infections (16 [20%] vs nine [11%]). There were two treatment-related deaths after randomisation, both in the continuous treatment group (one multiple organ dysfunction syndrome, not treated after randomisation, and one interstitial lung disease). INTERPRETATION: Our findings suggest that a dose-reduced regimen with alternating cycles of nab-paclitaxel-gemcitabine and gemcitabine alone after three induction cycles is associated with similar overall survival to that for standard treatment with nab-paclitaxel-gemcitabine, but with improved tolerability. We therefore propose that a switch to the alternating schedule could be considered in a clinical setting for patients with metastatic pancreatic cancer who have at least stable disease after three cycles of nab-paclitaxel-gemcitabine treatment. FUNDING: Celgene/Bristol Myers Squibb.


Asunto(s)
Albúminas , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Ductal Pancreático , Desoxicitidina , Gemcitabina , Paclitaxel , Neoplasias Pancreáticas , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/uso terapéutico , Desoxicitidina/efectos adversos , Paclitaxel/administración & dosificación , Paclitaxel/efectos adversos , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Albúminas/administración & dosificación , Albúminas/efectos adversos , Albúminas/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anciano , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Quimioterapia de Inducción/métodos , Esquema de Medicación
3.
iScience ; 27(7): 110299, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055943

RESUMEN

Lumens are crucial features of the tissue architecture in both the healthy exocrine pancreas, where ducts shuttle enzymes from the acini to the intestine, and in the precancerous lesions of the highly lethal pancreatic ductal adenocarcinoma (PDAC), similarly displaying lumens that can further develop into cyst-like structures. Branched pancreatic-cancer derived organoids capture key architectural features of both the healthy and diseased pancreas, including lumens. However, their transition from a solid mass of cells to a hollow tissue remains insufficiently explored. Here, we show that organoids display two orthogonal but complementary lumen formation mechanisms: one relying on fluid intake for multiple microlumen nucleation, swelling and fusion, and the other involving the death of a central cell population, thereby hollowing out cavities. These results shed further light on the processes of luminogenesis, deepening our understanding of the early formation of PDAC precancerous lesions, including cystic neoplasia.

4.
Adv Sci (Weinh) ; 11(31): e2307695, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885414

RESUMEN

Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ferroptosis , Neoplasias Pancreáticas , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Ratones , Animales
6.
Endosc Int Open ; 12(3): E361-E366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38464982

RESUMEN

Background and study aims The prognosis for pancreatic cancer remains poor. Molecular diagnostics and customized therapies are becoming increasingly important in clinical routine. Patient-derived, predictive model systems such as organoids have the potential to substantially increase the depth of information from biopsy material by functional and molecular characterization. We compared the extent to which the use of fine-needle aspiration needles (FNA, 22G) or fine-needle biopsy needles (FNB, 22G) influences the generation of pancreatic cancer patient-derived organoids (PDOs) to establish endoscopic standards of organoid technology. Patients and methods Endoscopic ultrasound (EUS)-guided punctures by EUS-FNA and EUS-FNB of pancreatic masses highly suspicious for adenocarcinoma (detected by computed tomography and/or magnetic resonance imaging) were prospectively evaluated. Consecutive patients received EUS-FNA and EUS-FNB in a randomized order without the need to exchange the needle shaft (only the inner needle type (FNA/-B) was exchanged) between the passes. With each needle type, the specimens for histological analysis and for PDOs were obtained separately. Results Fifty patients were enrolled in the study. Histology revealed malignancy in 42 of 50 cases (84%). In total PDOs were generated from 17 patients (34%). Of these, nine were established by FNB only, two by FNA only, and six by both FNA and FNB. Histology revealed malignancy in 13 of 17 PDO cases (76%). In two histologically false-negative cases, PDOs could be established. Conclusions EUS-FNB was superior to EUS-FNA in terms of successful generation of PDOs, although it failed to show statistical significance.

7.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37913894

RESUMEN

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína smad3/metabolismo
8.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607005

RESUMEN

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , Paxillin/genética , Paxillin/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Fenotipo , Línea Celular Tumoral , Neoplasias Pancreáticas
9.
J Clin Med ; 12(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37510756

RESUMEN

Nivolumab is a promising monoclonal antibody inhibitor of programmed death-1, a protein on the surface of T-cells. As such, it is approved for use in patients with multiple advanced malignancies and can significantly elongate progression-free survival. However, monoclonal antibody inhibitors can lead to adverse hepatic reactions, which in rare cases result in further hepatic damage. Herein, we present a case of a patient with locally advanced gastric carcinoma treated with fluorouracil, oxaliplatin, docetaxel and the checkpoint inhibitor nivolumab. Five months after her first dosage of nivolumab and without a preexisting liver disease, she presented with transaminitis. During the course of her stay, the patient developed status epilepticus, which required mechanical ventilation followed by fulminant hepatic failure. A subsequent liver biopsy revealed severe liver damage with extensive confluent parenchymal necrosis corresponding to checkpoint-inhibitor-induced hepatitis. Alternative reasons for this hepatic failure were ruled out. Despite aggressive therapeutic interventions including corticosteroids and plasma exchange, the patient died due to liver failure. Although hepatic failure is rarely seen in patients with checkpoint inhibitor therapy, it requires early awareness and rapid intervention.

10.
Cell Rep ; 42(6): 112533, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37257449

RESUMEN

The acquisition of mesenchymal traits is considered a hallmark of breast cancer progression. However, the functional relevance of epithelial-to-mesenchymal transition (EMT) remains controversial and context dependent. Here, we isolate epithelial and mesenchymal populations from human breast cancer metastatic biopsies and assess their functional potential in vivo. Strikingly, progressively decreasing epithelial cell adhesion molecule (EPCAM) levels correlate with declining disease propagation. Mechanistically, we find that persistent EPCAM expression marks epithelial clones that resist EMT induction and propagate competitively. In contrast, loss of EPCAM defines clones arrested in a mesenchymal state, with concomitant suppression of tumorigenicity and metastatic potential. This dichotomy results from distinct clonal trajectories impacting global epigenetic programs that are determined by the interplay between human ZEB1 and its target GRHL2. Collectively, our results indicate that susceptibility to irreversible EMT restrains clonal propagation, whereas resistance to mesenchymal reprogramming sustains disease spread in multiple models of human metastatic breast cancer, including patient-derived cells in vivo.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Molécula de Adhesión Celular Epitelial , Neoplasias de la Mama/patología , Línea Celular Tumoral , Mama/metabolismo , Células Clonales/metabolismo , Transición Epitelial-Mesenquimal
11.
Endoscopy ; 55(5): 415-422, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36323331

RESUMEN

BACKGROUND: Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images. METHODS: For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to fine-tune a convolutional neural network and to classify "low grade IPMN" from "high grade IPMN/invasive carcinoma." Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines. RESULTS: Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6 % (95 %CI 99.5 %-99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8 % (95 %CI 31.9 %-71.3 %) and 70.4 % (95 %CI 49.8-86.2). CONCLUSION: This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy.


Asunto(s)
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Aprendizaje Profundo , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Estudios Retrospectivos , Neoplasias Intraductales Pancreáticas/diagnóstico por imagen , Proyectos Piloto , Adenocarcinoma Mucinoso/patología , Neoplasias Pancreáticas/patología
12.
Cell Mol Life Sci ; 80(1): 12, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534167

RESUMEN

Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-fos , Animales , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neoplasias Pancreáticas
13.
J Pathol ; 257(5): 607-619, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35373359

RESUMEN

Drug combination therapies for cancer treatment show high efficacy but often induce severe side effects, resulting in dose or cycle number reduction. We investigated the impact of neoadjuvant chemotherapy (neoCTx) adaptions on treatment outcome in 59 patients with pancreatic ductal adenocarcinoma (PDAC). Resections with tumor-free margins were significantly more frequent when full-dose neoCTx was applied. We determined if patient-derived organoids (PDOs) can be used to personalize poly-chemotherapy regimens by pharmacotyping of treatment-naïve and post-neoCTx PDAC PDOs. Five out of ten CTx-naïve PDO lines exhibited a differential response to either the FOLFIRINOX or the Gem/Pac regimen. NeoCTx PDOs showed a poor response to the neoadjuvant regimen that had been administered to the respective patient in 30% of cases. No significant difference in PDO response was noted when comparing modified treatments in which the least effective single drug was removed from the complete regimen. Drug testing of CTx-naïve PDAC PDOs and neoCTx PDOs may be useful to guide neoadjuvant and adjuvant regimen selection, respectively. Personalizing poly-chemotherapy regimens by omitting substances with low efficacy could potentially result in less severe side effects, thereby increasing the fraction of patients receiving a full course of neoadjuvant treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Resistencia a Medicamentos , Humanos , Terapia Neoadyuvante , Organoides/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
14.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35439169

RESUMEN

Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found that protein arginine N-methyltransferase 5 (PRMT5) inhibitors triggered an MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirmed the increased efficacy of PRMT5 inhibitors in MYC-deregulated PDACs. Although inhibition of PRMT5 was inducing DNA damage and arresting PDAC cells in the G2/M phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor-sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Epigénesis Genética , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias Pancreáticas
16.
Nat Protoc ; 17(4): 1142-1188, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288718

RESUMEN

Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control. Beyond experimental design and execution, the protocol describes quantification of genetic and functional editing outcomes, including sequencing approaches, data analysis and interpretation. Compared to traditional knockout mice, somatic GEMMs face an increased risk for mouse-to-mouse variability because of the higher experimental demands of the procedures. The robust protocols described here will help unleash the full potential of somatic genome manipulation. Depending on the delivery method and envisaged application, the protocol takes 3-5 weeks.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Hígado , Ratones , Ratones Noqueados , Neoplasias/genética , Páncreas
17.
Nat Cancer ; 3(3): 318-336, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122074

RESUMEN

KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral
18.
EMBO Mol Med ; 14(4): e14876, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35119792

RESUMEN

Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in pancreatic ductal adenocarcinoma (PDAC) is currently neglectable. We present a longitudinal precision oncology platform based on functional model systems, including patient-derived organoids, to identify chemotherapy-induced vulnerabilities. We demonstrate that treatment-induced tumor cell plasticity in vivo distinctly changes responsiveness to targeted therapies, without the presence of a selectable genetic marker, indicating that tumor cell plasticity can be functionalized. By adding a mechanistic layer to precision oncology, adaptive processes of tumors under therapy can be exploited, particularly in highly plastic tumors, such as pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Humanos , Organoides/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Medicina de Precisión , Neoplasias Pancreáticas
19.
Cancer Res ; 82(4): 695-707, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34903606

RESUMEN

The mortality of patients with pancreatic ductal adenocarcinoma (PDAC) is strongly associated with metastasis, a multistep process that is incompletely understood in this disease. Although genetic drivers of PDAC metastasis have not been defined, transcriptional and epigenetic rewiring can contribute to the metastatic process. The epigenetic eraser histone deacetylase 2 (HDAC2) has been connected to less differentiated PDAC, but the function of HDAC2 in PDAC has not been comprehensively evaluated. Using genetically defined models, we show that HDAC2 is a cellular fitness factor that controls cell cycle in vitro and metastasis in vivo, particularly in undifferentiated, mesenchymal PDAC cells. Unbiased expression profiling detected a core set of HDAC2-regulated genes. HDAC2 controlled expression of several prosurvival receptor tyrosine kinases connected to mesenchymal PDAC, including PDGFRα, PDGFRß, and EGFR. The HDAC2-maintained program disabled the tumor-suppressive arm of the TGFß pathway, explaining impaired metastasis formation of HDAC2-deficient PDAC. These data identify HDAC2 as a tractable player in the PDAC metastatic cascade. The complexity of the function of epigenetic regulators like HDAC2 implicates that an increased understanding of these proteins is needed for implementation of effective epigenetic therapies. SIGNIFICANCE: HDAC2 has a context-specific role in undifferentiated PDAC and the capacity to disseminate systemically, implicating HDAC2 as targetable protein to prevent metastasis.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 2/genética , Neoplasias Pancreáticas/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Histona Desacetilasa 2/metabolismo , Humanos , Estimación de Kaplan-Meier , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Metástasis de la Neoplasia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal/genética
20.
Bioorg Chem ; 119: 105505, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34838332

RESUMEN

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Gastrointestinales/tratamiento farmacológico , Talidomida/farmacología , Tiazoles/farmacología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Humanos , Estructura Molecular , Relación Estructura-Actividad , Talidomida/síntesis química , Talidomida/química , Tiazoles/síntesis química , Tiazoles/química , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...