RESUMEN
PURPOSE: To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS: The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS: The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from 8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to 8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from 2 × 31 $$ 2\times 31 $$ min to 2 × 23 $$ 2\times 23 $$ min. CONCLUSION: The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.
Asunto(s)
Algoritmos , Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido , Sodio , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sodio/química , Procesamiento de Imagen Asistido por Computador/métodos , Isótopos de Sodio , Imagenología Tridimensional/métodos , Simulación por ComputadorRESUMEN
PURPOSE: Sodium triple quantum (TQ) signal has been shown to be a valuable biomarker for cell viability. Despite its clinical potential, application of Sodium TQ signal is hindered by complex pulse sequences with long scan times. This study proposes a method to approximate the TQ signal using a single excitation pulse without phase cycling. METHODS: The proposed method is based on a single excitation pulse and a comparison of the free induction decay (FID) with the integral of the FID combined with a shifting reconstruction window. The TQ signal is calculated from this FID only. As a proof of concept, the method was also combined with a multi-echo UTE imaging sequence on a 9.4 T preclinical MRI scanner for the possibility of fast TQ MRI. RESULTS: The extracted Sodium TQ signals of single-pulse and spin echo FIDs were in close agreement with theory and TQ measurement by traditional three-pulse sequence (TQ time proportional phase increment [TQTPPI)]. For 2%, 4%, and 6% agar samples, the absolute deviations of the maximum TQ signals between SE and theoretical (time proportional phase increment TQTPPI) TQ signals were less than 1.2% (2.4%), and relative deviations were less than 4.6% (6.8%). The impact of multi-compartment systems and noise on the accuracy of the TQ signal was small for simulated data. The systematic error was <3.4% for a single quantum (SQ) SNR of 5 and at maximum <2.5% for a multi-compartment system. The method also showed the potential of fast in vivo SQ and TQ imaging. CONCLUSION: Simultaneous SQ and TQ MRI using only a single-pulse sequence and SQ time efficiency has been demonstrated. This may leverage the full potential of the Sodium TQ signal in clinical applications.
Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Sodio , Imagen por Resonancia Magnética/métodos , Sodio/química , Procesamiento de Señales Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Relación Señal-Ruido , AnimalesRESUMEN
PURPOSE: Both sodium T1 triple quantum (TQ) signal and T1 relaxation pathways have a unique sensitivity to the sodium molecular environment. In this study an inversion recovery time proportional phase increment (IRTQTPPI) pulse sequence was investigated for simultaneous and reliable quantification of sodium TQ signal and bi-exponential T1 relaxation times. METHODS: The IRTQTPPI sequence combines inversion recovery TQ filtering and time proportional phase increment. The reliable and reproducible results were achieved by the pulse sequence optimized in three ways: (1) optimization of the nonlinear fit for the determination of both T1-TQ signal and T1 relaxation times; (2) suppression of unwanted signals by assessment of four different phase cycles; (3) nonlinear sampling during evolution time for optimal scan time without any compromises in fit accuracy. The relaxation times T1 and T2 and the TQ signals from IRTQTPPI and TQTPPI were compared between 9.4 and 21.1 T. The motional environment of the sodium nuclei was evaluated by calculation of correlation times and nuclear quadrupole interaction strengths. RESULTS: Reliable measurements of the T1-TQ signals and T1 bi-exponential relaxation times were demonstrated. The fit parameters for all four phase cycles were in good agreement with one another, with a negligible influence of unwanted signals. The agar samples yielded normalized T1-TQ signals from 3% to 16% relative to single quantum (SQ) signals at magnetic fields of both 9.4 and 21.1 T. In comparison, the normalized T2-TQ signal was in the range 15%-35%. The TQ/SQ signal ratio was decreased at 21.1 T as compared with 9.4 T for both T1 and T2 relaxation pathways. The bi-exponential T1 relaxation time separation ranged from 15 to 18 ms at 9.4 T and 15 to 21 ms at 21.1 T. The T2 relaxation time separation was larger, ranging from 28 to 35 ms at 9.4 T and 37 to 40 ms at 21.1 T. CONCLUSION: The IRTQTPPI sequence, while providing a less intensive TQ signal than TQTPPI, allows a simultaneous and reliable quantification of both the T1-TQ signal and T1 relaxation times. The unique sensitivities of the T1 and T2 relaxation pathways to different types of molecular motion provide a deeper understanding of the sodium MR environment.
Asunto(s)
Imagen por Resonancia Magnética , Sodio , Imagen por Resonancia Magnética/métodosRESUMEN
PURPOSE: Sodium (23 Na) multi-quantum coherences (MQC) MRI was accelerated using three-dimensional (3D) and a dedicated five-dimensional (5D) compressed sensing (CS) framework for simultaneous Cartesian single (SQ) and triple quantum (TQ) sodium imaging of in vivo human brain at 3.0 and 7.0 T. THEORY AND METHODS: 3D 23 Na MQC MRI requires multi-echo paired with phase-cycling and exhibits thus a multidimensional space. A joint reconstruction framework to exploit the sparsity in all imaging dimensions by extending the conventional 3D CS framework to 5D was developed. 3D MQC images of simulated brain, phantom and healthy brain volunteers obtained from 3.0 T and 7.0 T were retrospectively and prospectively undersampled. Performance of the CS models were analyzed by means of structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR) and signal quantification of tissue sodium concentration and TQ/SQ ratio. RESULTS: It was shown that an acceleration of three-fold, leading to less than 2 × 10 $$ 2\times 10 $$ min of scan time with a resolution of 8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ at 3.0 T, are possible. 5D CS improved SSIM by 3%, 5%, 1% and reduced RMSE by 50%, 30%, 8% for in vivo SQ, TQ, and TQ/SQ ratio maps, respectively. Furthermore, for the first time prospective undersampling enabled unprecedented high resolution from 8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ to 6 × 6 × 10 mm 3 $$ 6\times 6\times 10\;{\mathrm{mm}}^3 $$ MQC images of in vivo human brain at 7.0 T without extending acquisition time. CONCLUSION: 5D CS proved to allow up to three-fold acceleration retrospectively on 3.0 T data. 2-fold acceleration was demonstrated prospectively at 7.0 T to reach higher spatial resolution of 23 Na MQC MRI.