Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Expert Opin Ther Pat ; 34(4): 211-229, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38742308

RESUMEN

INTRODUCTION: SMARCA2 and SMARCA4 are subunits of the SWI/SNF complex which is a chromatin remodeling complex and a key epigenetic regulator that facilitates gene expression. Tumors with loss of function mutations in SMARCA4 rely on SMARCA2 for cell survival and this synthetic lethality is a potential therapeutic strategy to treat cancer. AREAS COVERED: The current review focuses on patent applications that claim proteolysis-targeting chimeras (PROTAC) degraders that bind the bromodomain site of SMARCA2 and are published between January 2019-June 2023. A total of 29 applications from 9 different applicants were evaluated. EXPERT OPINION: SMARCA2/4 bromodomain inhibitors do not lead to desired effects on cancer proliferation; however, companies have converted bromodomain binders into PROTACs to degrade the protein, with a preference for SMARCA2 over SMARCA4. Selective degradation of SMARCA2 is most likely required to be efficacious in the SMARCA4-deficient setting, while allowing for sufficient safety margin in normal tissues. With several patent applications disclosed recently, interest in targeting SMARCA2 should continue, especially with a selective SMARCA2 PROTAC now in the clinic from Prelude Therapeutics. The outcome of the clinical trials will influence the evolution of selective SMARCA2 PROTACs development.


Asunto(s)
Antineoplásicos , ADN Helicasas , Neoplasias , Proteínas Nucleares , Patentes como Asunto , Mutaciones Letales Sintéticas , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Animales , ADN Helicasas/metabolismo , Antineoplásicos/farmacología , Proteolisis/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/antagonistas & inhibidores , Terapia Molecular Dirigida
2.
Expert Opin Ther Pat ; 34(3): 159-169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38578210

RESUMEN

INTRODUCTION: The multi-subunit SWI/SNF chromatin remodeling complex is a key epigenetic regulator for many cellular processes, and several subunits are found to be mutated in human cancers. The inactivating mutations of SMARCA4, the ATPase subunit of the complex, result in cellular dependency on the paralog SMARCA2 for survival. This observed synthetic lethal relationship posits targeting SMARCA2 in SMARCA4-deficient settings as an attractive therapeutic target in oncology. AREAS COVERED: This review covers patent literature disclosed during the 2019-30 June 2023 period which claim ATPase inhibitors and PROTAC degraders that bind to the ATPase domain of SMARCA2 and/or SMARCA4. A total of 16 documents from 6 applicants are presented. EXPERT OPINION: The demonstration of cellular dependence on SMARCA2 ATPase activity in SMARCA4-deficient settings has prompted substantial research toward SMARCA2-targeting therapies. Although selectively targeting the ATPase domain of SMARCA2 is viewed as challenging, several ATPase inhibitor scaffolds have been disclosed within the last five years. Most early compounds are weakly selective, but these efforts have culminated in the first dual SMARCA2/SMARCA4 ATPase inhibitor to enter clinical trials. Data from the ongoing clinical trials, as well as continued advancement of SMARCA2-selective ATPase inhibitors, are anticipated to significantly impact the field of therapies, targeting SMARCA4-deficient tumors.


Asunto(s)
Antineoplásicos , ADN Helicasas , Terapia Molecular Dirigida , Neoplasias , Proteínas Nucleares , Patentes como Asunto , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Antineoplásicos/farmacología , ADN Helicasas/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Animales , Mutaciones Letales Sintéticas , Mutación , Adenosina Trifosfatasas/metabolismo
3.
Microbiol Spectr ; 12(4): e0409523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376363

RESUMEN

Candida albicans, one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug's target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida, including Candida auris and Candida glabrata, with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus. Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicansIMPORTANCEThe worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans. Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus. Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.


Asunto(s)
Productos Biológicos , Micosis , Xantonas , Humanos , Candida albicans , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Micosis/tratamiento farmacológico , Farmacorresistencia Fúngica , Quelantes/farmacología , Quelantes/uso terapéutico , Aspergillus fumigatus , Hierro , Xantonas/uso terapéutico , Pruebas de Sensibilidad Microbiana
4.
J Am Chem Soc ; 141(1): 148-153, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30566336

RESUMEN

Asymmetric synthesis of the biologically active xanthone dimer griffipavixanthone is reported along with its absolute stereochemistry determination. Synthesis of the natural product is accomplished via dimerization of a p-quinone methide using a chiral phosphoric acid catalyst to afford a protected precursor in excellent diastereo- and enantioselectivity. Mechanistic studies, including an unbiased computational investigation of chiral ion-pairs using parallel tempering, were performed in order to probe the mode of asymmetric induction.


Asunto(s)
Ácidos Fosfóricos/química , Xantonas/química , Xantonas/síntesis química , Catálisis , Técnicas de Química Sintética , Modelos Moleculares , Conformación Molecular
5.
J Am Chem Soc ; 140(18): 5969-5975, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29658717

RESUMEN

The first synthesis of the chromanone lactone dimer gonytolide A has been achieved employing vanadium(V)-mediated oxidative coupling of the monomer gonytolide C. An o-bromine blocking group strategy was employed to favor para- para coupling and to enable kinetic resolution of (±)-gonytolide C. Asymmetric conjugate reduction enabled practical kinetic resolution of a chiral, racemic precursor and the asymmetric synthesis of (+)-gonytolide A and its atropisomer.


Asunto(s)
Cromonas/síntesis química , Hidrocarburos Bromados/química , Lactonas/síntesis química , Vanadio/química , Cromonas/química , Lactonas/química , Conformación Molecular , Oxidación-Reducción
6.
Angew Chem Int Ed Engl ; 57(8): 2101-2104, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29318760

RESUMEN

An efficient annulation involving pyrone addition to a quinone and Dieckmann condensation was developed for rapid assembly of a γ-naphthopyrone monomeric precursor to the bis-naphthoquinone natural product aurofusarin. Dimerization was achieved through PdII -catalyzed dehydrogenative coupling. Further studies employing asymmetric nucleophilic epoxidation indicate that the atropisomers of aurofusarin and derivatives are not configurationally stable at ambient temperature.


Asunto(s)
Naftoquinonas/química , Benzoquinonas/química , Catálisis , Cristalografía por Rayos X , Dimerización , Isomerismo , Conformación Molecular , Naftoquinonas/síntesis química , Paladio/química
7.
J Am Chem Soc ; 139(40): 14053-14056, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28942643

RESUMEN

We report the concise, biomimetic total synthesis of the dimeric, Diels-Alder natural product griffipavixanthone from a readily accessible prenylated xanthone monomer. The key step utilizes a novel intermolecular [4+2] cycloaddition-cyclization cascade between a vinyl p-quinone methide and an in situ generated isomeric diene promoted by either Lewis or Brønsted acids. Experimental and computational studies of the reaction pathway suggest that a stepwise, cationic Diels-Alder cycloaddition is operative.


Asunto(s)
Productos Biológicos/síntesis química , Xantonas/síntesis química , Productos Biológicos/química , Biomimética/métodos , Cristalografía por Rayos X , Ciclización , Reacción de Cicloadición/métodos , Modelos Moleculares , Estereoisomerismo , Xantonas/química
8.
J Am Chem Soc ; 139(16): 6008-6016, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28398750

RESUMEN

Studies of the stoichiometric and catalytic reactivity of a geometrically constrained phosphorous triamide 1 with pinacolborane (HBpin) are reported. The addition of HBpin to phosphorous triamide 1 results in cleavage of the B-H bond of pinacolborane through addition across the electrophilic phosphorus and nucleophilic N-methylanilide sites in a cooperative fashion. The kinetics of this process of were investigated by NMR spectroscopy, with the determined overall second-order empirical rate law given by ν = -k[1][HBpin], where k = 4.76 × 10-5 M-1 s-1 at 25 °C. The B-H bond activation process produces P-hydrido-1,3,2-diazaphospholene intermediate 2, which exhibits hydridic reactivity capable of reacting with imines to give phosphorous triamide intermediates, as confirmed by independent synthesis. These phosphorous triamide intermediates are typically short lived, evolving with elimination of the N-borylamine product of imine hydroboration with regeneration of the deformed phosphorous triamide 1. The kinetics of this latter process are shown to be first-order, indicative of a unimolecular mechanism. Consequently, catalytic hydroboration of a variety of imine substrates can be realized with 1 as the catalyst and HBpin as the terminal reagent. A mechanistic proposal implicating a P-N cooperative mechanism for catalysis that incorporates the various independently verified stoichiometric steps is presented, and a comparison to related phosphorus-based systems is offered.


Asunto(s)
Amidas/química , Boranos/química , Boranos/síntesis química , Nitrógeno/química , Fósforo/química , Catálisis , Estructura Molecular , Estereoisomerismo
9.
J Am Chem Soc ; 137(16): 5292-5, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25874950

RESUMEN

We report that a regioselective reductive transposition of primary allylic bromides is catalyzed by a biphilic organophosphorus (phosphetane) catalyst. Spectroscopic evidence supports the formation of a pentacoordinate (σ(5)-P) hydridophosphorane as a key reactive intermediate. Kinetics experiments and computational modeling are consistent with a unimolecular decomposition of the σ(5)-P hydridophosphorane via a concerted cyclic transition structure that delivers the observed allylic transposition and completes a novel P(III)/P(V) redox catalytic cycle. These results broaden the growing repertoire of reactions catalyzed within the P(III)/P(V) redox couple and suggest additional opportunities for organophosphorus catalysis in a biphilic mode.


Asunto(s)
Compuestos Alílicos/química , Bromuros/química , Compuestos Organofosforados/química , Fósforo/química , Catálisis , Oxidación-Reducción , Estereoisomerismo
10.
Chem Commun (Camb) ; 50(66): 9302-5, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25000554

RESUMEN

Z-Enediynes are prepared by a vicinal dialkynylation of triaryl(arylethynyl)phosphonium cations. The method, which proceeds under mild transition metal-free conditions, can be conducted on multigram scale as a one-pot, phosphine-mediated synthetic cycle giving enediyne products with excellent control of configuration.

11.
J Am Chem Soc ; 135(25): 9354-7, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23745778

RESUMEN

We report that pyramidal inversion of trivalent phosphines may be catalyzed by single electron oxidation. Specifically, a series of P-stereogenic (aryl)methylphenyl phosphines are shown to undergo rapid racemization at ambient temperature when exposed to catalytic quantities of a single electron oxidant in solution. Under these conditions, transient phosphoniumyl radical cations (R3P(•+)) are formed, and computational models indicate that the pyramidal inversion barriers for these open-shell intermediates are on the order of ∼5 kcal/mol. The observed 10(20)-fold rate enhancement over uncatalyzed pyramidal inversion opens new opportunities for the dynamic stereochemistry of phosphines and may hold additional implications for the configurational stability of P-stereogenic phosphine ligands on high-valent oxidizing transition metals.


Asunto(s)
Electrones , Fosfinas/síntesis química , Catálisis , Estructura Molecular , Oxidación-Reducción , Fosfinas/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...