Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174281, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38936735

RESUMEN

Agricultural intensification is a major driver of global biodiversity loss. In Europe, intensification progressed over the 20th century and was accelerated by instruments of the EU's Common Agricultural Policy. Central and Eastern European (CEE) countries standing outside the EU until the beginning of the 21st century employed less intensive farming and are considered one of the continent's farmland biodiversity strongholds. Their recent EU accession might be either viewed as a threat to farmland biodiversity due to the availability of funds to increase agricultural production or as an opportunity to implement conservation measures aimed to preserve biodiversity. Here we assessed these possibilities using long-term monitoring data on farmland bird populations in seven CEE countries. We tested whether mean relative abundance and population trends changed after countries' EU accession, and whether such changes also occurred in agricultural management and conservation measures. Both agricultural intensity and spending for agri-environmental and climatic schemes increased when the CEE countries joined the EU. At the same time, farmland bird populations started to decline and their relative abundance was lower after than before EU accession. In addition, increases in fertilizer application were negatively associated with annual changes in relative farmland bird population sizes, indicating a negative impact of intensive agriculture. Taken together, these results indicate that despite the great power of the EU's environmental legislation to improve the population status of species at risk, this does not apply to farmland birds. In their case, the adverse impacts of agricultural intensification most likely overrode the possible benefits of conservation measures. To secure this region as one of the continent's farmland biodiversity strongholds, policy and management actions are urgently needed.

2.
iScience ; 27(5): 109717, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706865

RESUMEN

Colonization of urban areas by wild species is a widespread phenomenon investigated from various ecological and evolutionary perspectives, yet long-term population trends of organisms in urban areas remain understudied. To fill this knowledge gap, we used data from a large-scale breeding bird monitoring scheme and computed population trends in 48 urban bird species in urban and rural areas of a central European country, Czechia. In most species, trends were similar in both environments, indicating common drivers and/or connections between urban and rural populations. In species with significant trends, the positive trends prevailed, suggesting good performance of urbanized species. This may result from wildlife-friendly environmental changes in cities, such as the expansion of green areas and the maturing of woody vegetation. In respect to species traits, more positive trends were found in larger species than in smaller species in both habitats, likely due to the recovery of previously depleted populations.

3.
Int J Parasitol ; 54(7): 357-366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460721

RESUMEN

Parasites are a key driving force behind many ecological and evolutionary processes. Prevalence and diversity of parasites, as well as their effects on hosts, are not uniform across host species. As such, the potential parasite spillover between species can significantly influence outcomes of interspecific interactions. We screened two species of Luscinia nightingales for haemosporidian blood parasites (Plasmodium, Leucocytozoon and Haemoproteus) along an approximately 3000 km transect in Europe, incorporating areas of host distant allopatry, close allopatry and sympatry. We found significant differences in infection rates between the two host species, with common nightingales having much lower parasite prevalence than thrush nightingales (36.7% versus 83.8%). This disparity was mostly driven by Haemoproteus prevalence, which was significantly higher in thrush nightingales while common nightingales had a small, but significantly higher, Plasmodium prevalence. Furthermore, we found no effect of proximity to the contact zone on infection rate in either host species. Despite having lower infection prevalence, common nightingales were infected with a significantly higher diversity of parasite lineages than thrush nightingales, and lineage assemblages differed considerably between the two species, even in sympatry. This pattern was mostly driven by the large diversity of comparatively rare lineages, while the most abundant lineages were shared between the two host species. This suggests that, despite the close evolutionary relationships between the two nightingales, there are significant differences in parasite prevalence and diversity, regardless of the distance from the contact zone. This suggests that spillover of haemosporidian blood parasites is unlikely to contribute towards interspecific interactions in this system.


Asunto(s)
Haemosporida , Simpatría , Animales , Prevalencia , Haemosporida/clasificación , Haemosporida/aislamiento & purificación , Haemosporida/genética , Infecciones Protozoarias en Animales/epidemiología , Infecciones Protozoarias en Animales/parasitología , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/epidemiología , Interacciones Huésped-Parásitos , Especificidad del Huésped , Europa (Continente)/epidemiología , Passeriformes/parasitología
4.
iScience ; 27(2): 108945, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38322998

RESUMEN

Urbanization alters avian communities, generally lowering the number of species and contemporaneously increasing their functional relatedness, leading to biotic homogenization. Urbanization can also negatively affect the phylogenetic diversity of species assemblages, potentially decreasing their evolutionary distinctiveness. We compare species assemblages in a gradient of building density in seventeen European cities to test whether the evolutionary distinctiveness of communities is shaped by the degree of urbanization. We found a significant decline in the evolutionary uniqueness of avian communities in highly dense urban areas, compared to low and medium-dense areas. Overall, communities from dense city centers supported one million years of evolutionary history less than communities from low-dense urban areas. Such evolutionary homogenization was due to a filtering process of the most evolutionarily unique birds. Metrics related to evolutionary uniqueness have to play a role when assessing the effects of urbanization and can be used to identify local conservation priorities.

5.
Naturwissenschaften ; 110(6): 54, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957333

RESUMEN

The current ecological crisis has risen extinction rates to similar levels of ancient mass extinctions. However, it seems to not be acting uniformly across all species but affecting species differentially. This suggests that species' susceptibility to the extinction process is mediated by specific traits. Since understanding this response mechanism at large scales will benefit conservation effort around the world, we used the IUCN global threat status and population trends of 8281 extant bird species as proxies of the extinction risk to identify the species-specific traits affecting their susceptibility to extinction within the biogeographic regions and at the global scale. Using linear mixed effect models and multinomial models, we related the global threat status and the population trends with the following traits: migratory strategy, habitat and diet specialization, body size, and generation length. According to our results and independently of the proxy used, more vulnerable species are sedentary and have larger body size, longer generation time, and higher degree of habitat specialization. These relationships apply globally and show little variation across biogeographic regions. We suggest that such concordant patterns might be caused either by a widespread occurrence of the same threats such as habitat modification or by a uniform capacity of some traits to reflect the impact of different local threats. Regardless of the cause of this pattern, our study identified the traits that affect species' response capability to the current ecological crisis. Conservation effort should focus on the species with trait values indicating the limited response capacity to overcome this crisis.


Asunto(s)
Cambio Climático , Extinción Biológica , Animales , Ecosistema , Especificidad de la Especie , Aves , Conservación de los Recursos Naturales , Biodiversidad
6.
Nat Commun ; 14(1): 4579, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516764

RESUMEN

The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.


Asunto(s)
Pájaros Cantores , Animales , Pájaros Cantores/genética , Sistemas de Lectura Abierta , Evolución Biológica , Células Germinativas , Cromosomas
7.
Proc Natl Acad Sci U S A ; 120(21): e2216573120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186854

RESUMEN

Declines in European bird populations are reported for decades but the direct effect of major anthropogenic pressures on such declines remains unquantified. Causal relationships between pressures and bird population responses are difficult to identify as pressures interact at different spatial scales and responses vary among species. Here, we uncover direct relationships between population time-series of 170 common bird species, monitored at more than 20,000 sites in 28 European countries, over 37 y, and four widespread anthropogenic pressures: agricultural intensification, change in forest cover, urbanisation and temperature change over the last decades. We quantify the influence of each pressure on population time-series and its importance relative to other pressures, and we identify traits of most affected species. We find that agricultural intensification, in particular pesticides and fertiliser use, is the main pressure for most bird population declines, especially for invertebrate feeders. Responses to changes in forest cover, urbanisation and temperature are more species-specific. Specifically, forest cover is associated with a positive effect and growing urbanisation with a negative effect on population dynamics, while temperature change has an effect on the dynamics of a large number of bird populations, the magnitude and direction of which depend on species' thermal preferences. Our results not only confirm the pervasive and strong effects of anthropogenic pressures on common breeding birds, but quantify the relative strength of these effects stressing the urgent need for transformative changes in the way of inhabiting the world in European countries, if bird populations shall have a chance of recovering.


Asunto(s)
Agricultura , Bosques , Animales , Granjas , Europa (Continente) , Dinámica Poblacional , Aves/fisiología , Biodiversidad , Ecosistema , Conservación de los Recursos Naturales
8.
Animals (Basel) ; 13(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048448

RESUMEN

Understanding habitat and spatial overlap in sympatric species of urban areas would aid in predicting species and community modifications in response to global change. Habitat overlap has been widely investigated for specialist species but neglected for generalists living in urban settings. Many corvid species are generalists and are adapted to urban areas. This work aimed to determine the urban habitat requirements and spatial overlap of five corvid species in sixteen European cities during the breeding season. All five studied corvid species had high overlap in their habitat selection while still having particular tendencies. We found three species, the Carrion/Hooded Crow, Rook, and Eurasian Magpie, selected open habitats. The Western Jackdaw avoided areas with bare soil cover, and the Eurasian Jay chose more forested areas. The species with similar habitat selection also had congruent spatial distributions. Our results indicate that although the corvids had some tendencies regarding habitat selection, as generalists, they still tolerated a wide range of urban habitats, which resulted in high overlap in their habitat niches and spatial distributions.

9.
Sci Rep ; 13(1): 4361, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928766

RESUMEN

Urbanization affects avian community composition in European cities, increasing biotic homogenization. Anthropic pollution (such as light at night and noise) is among the most important drivers shaping bird use in urban areas, where bird species are mainly attracted by urban greenery. In this study, we collected data on 127 breeding bird species at 1349 point counts distributed along a gradient of urbanization in fourteen different European cities. The main aim was to explore the effects of anthropic pollution and city characteristics, on shaping the avian communities, regarding species' diet composition. The green cover of urban areas increased the number of insectivorous and omnivorous bird species, while slightly decreasing the overall diet heterogeneity of the avian communities. The green heterogeneity-a measure of evenness considering the relative coverage of grass, shrubs and trees-was positively correlated with the richness of granivorous, insectivorous, and omnivorous species, increasing the level of diet heterogeneity in the assemblages. Additionally, the effects of light pollution on avian communities were associated with the species' diet. Overall, light pollution negatively affected insectivorous and omnivorous bird species while not affecting granivorous species. The noise pollution, in contrast, was not significantly associated with changes in species assemblages. Our results offer some tips to urban planners, managers, and ecologists, in the challenge of producing more eco-friendly cities for the future.


Asunto(s)
Biodiversidad , Ruido , Animales , Ciudades , Ruido/efectos adversos , Fitomejoramiento , Aves , Urbanización , Dieta , Ecosistema
10.
Sci Total Environ ; 876: 162711, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906038

RESUMEN

Mountain ecosystems are inhabited by species with specific characteristics enabling survival at high altitudes, which make them at risk from various pressures. In order to study these pressures, birds represent excellent model organisms due to their high diversity and position at the top of food chains. The pressures upon mountain bird populations include climate change, human disturbance, land abandonment, and air pollution, whose impacts are little understood. Ambient ozone (O3) is one of the most important air pollutants occurring in elevated concentrations in mountain conditions. Although laboratory experiments and indirect course-scale evidence suggest its negative effects on birds, population-level impacts remain unknown. To fill this knowledge gap, we analysed a unique 25-years long time series of annual monitoring of bird populations conducted at fixed sites under constant effort in a Central European mountain range, the Giant Mountains, Czechia. We related annual population growth rates of 51 bird species to O3 concentrations measured during the breeding season and hypothesized (i) an overall negative relationship across all species, and (ii) more negative O3 effects at higher altitudes due to increasing O3 concentration along altitudinal gradient. After controlling for the influence of weather conditions on bird population growth rates, we found an indication of the overall negative effect of O3 concentration, but it was insignificant. However, the effect became stronger and significant when we performed a separate analysis of upland species occupying the alpine zone above treeline. In these species, populations growth rates were lower after the years experiencing higher O3 concentration indicating an adverse impact of O3 on bird breeding. This impact corresponds well to O3 behaviour and mountain bird ecology. Our study thus represents the first step towards mechanistic understanding of O3 impacts on animal populations in nature linking the experimental results with indirect indications at the country-level.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Humanos , Animales , Ozono/toxicidad , Ozono/análisis , Ecosistema , Contaminación del Aire/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Aves
11.
Sci Rep ; 12(1): 22275, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566302

RESUMEN

Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.


Asunto(s)
Semen , Pájaros Cantores , Animales , Masculino , Femenino , Espermatozoides , Reproducción , Inseminación
12.
Ecol Evol ; 12(7): e9119, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35866025

RESUMEN

Species' geographical distributions and abundances are a central focus of current ecological research. Although multiple studies have been conducted on their elucidation, some important information is still missing. One of them is the knowledge of ecological traits of species responsible for the population density variations across geographical (i.e., total physical area) and ecological spaces (i.e., suitable habitat area). This is crucial for understanding how ecological specialization shapes the geographical distribution of species, and provides key knowledge about the sensitivity of species to current environmental challenges. Here, we precisely describe habitat availability for individual species using fine-scale field data collected across the entire Czech Republic. In the next step, we used this information to test the relationships between bird traits and country-scale estimates of population densities assessed in both geographical and ecological spaces. We did not find any effect of habitat specialization on avian density in geographical space. But when we recalculated densities for ecological space available, we found a positive correlation with habitat specialization. Specialists occur at higher densities in suitable habitats. Moreover, birds with arboreal and hole-nesting strategies showed higher densities in both geographical and ecological spaces. However, we found no significant effects of morphological (body mass and structural body size) and reproductive (position along the slow-fast life-history continuum) traits on avian densities in either geographical or ecological space. Our findings suggest that ecological space availability is a strong determinant of avian abundance and highlight the importance of precise knowledge of species-specific habitat requirements. Revival of this classical but challenging ecological topic of habitat-specific densities is needed for both proper understanding of pure ecological issues and practical steps in the conservation of nature.

13.
Animals (Basel) ; 12(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35327140

RESUMEN

Habitat overlap occurs when two species co-exist in the same habitat and utilise the same resources. Using common bird monitoring data in Czech Republic from 2015 and 2016, we compared the affinities of five Columbidae species regarding land use types. Moreover, we analysed the effects of land use types and land use heterogeneity on five species distributions. The aim of the study was to quantify the habitat overlap of five Columbidae species regarding types of land use and land use heterogeneity. We predicted a high level of habitat overlap between most of the species and its occurrence in farmlands and urban areas. Our results confirmed the high habitat overlap of all five Columbidae species in farmlands. An almost complete overlap was recorded between Columba livia domestica and Streptopelia decaocto, as well as between Columba palumbus and Streptopelia turtur. Considering land use utilisation, C. livia and S. decaocto mainly utilised farmlands and urban areas. Furthermore, deciduous forests were utilised by Columba oenas and coniferous and mixed forests by C. palumbus. Finally, S. turtur mainly utilised grasslands and avoided urban areas. We conclude that Columbidae species overlap in spatial distributions, mostly in urban areas, forests, and farmlands. Our study provides a summary of these common species habitat affinities.

14.
Front Genet ; 12: 768987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938317

RESUMEN

Changes in chromosomal structure involving chromosomal rearrangements or copy number variation of specific sequences can play an important role in speciation. Here, we explored the chromosomal structure of two hybridizing passerine species; the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia), using conventional cytogenetic approaches, immunostaining of meiotic chromosomes, fluorescence in situ hybridization as well as comparative genomic hybridization (CGH). We found that the two nightingale species show conserved karyotypes with the same diploid chromosome number of 2n = 84. In addition to standard chromosomes, both species possessed a small germline restricted chromosome of similar size as a microchromosome. Just a few subtle changes in chromosome morphology were observed between the species, suggesting that only a limited number of chromosomal rearrangements occurred after the species divergence. The interspecific CGH experiment suggested that the two nightingale species might have diverged in centromeric repetitive sequences in most macro- and microchromosomes. In addition, some chromosomes showed changes in copy number of centromeric repeats between the species. The observation of very similar karyotypes in the two nightingale species is consistent with a generally slow rate of karyotype evolution in birds. The divergence of centromeric sequences between the two species could theoretically cause meiotic drive or reduced fertility in interspecific hybrids. Nevertheless, further studies are needed to evaluate the potential role of chromosomal structural variations in nightingale speciation.

15.
Sci Total Environ ; 795: 148874, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246142

RESUMEN

Europe is an urbanized continent characterized by a long history of human-wildlife interactions. This study aimed to assess the effects of specific elements of urbanization and urban pollution on complementary avian diversity metrics, to provide new insights on the conservation of urban birds. Our study recorded 133 bird species at 1624 point counts uniformly distributed in seventeen different European cities. Our results thus covered a large spatial scale, confirming both effects of geographical and local attributes of the cities on avian diversity. However, we found contrasting effects for the different diversity components analyzed. Overall, taxonomic diversity (bird species richness), phylogenetic diversity and relatedness were significantly and negatively associated with latitude, while functional dispersion of communities showed no association whatsoever. At the local level (within the city), we found that urban greenery (grass, bush, and trees) is positively correlated with the number of breeding bird species, while the building cover showed a detrimental effect. Functional dispersion was the less affected diversity metric, while grass and trees and water (rivers or urban streams) positively affected the phylogenetic diversity of avian communities. Finally, the phylogenetic relatedness of species increased with all the main indicators of urbanization (building surface, floors, pedestrian's density and level of light pollution) and was only mitigated by the presence of bushes. We argue that maintaining adequate levels of avian diversity within the urban settlements can help to increase the potential resilience of urban ecosystems exposed to the stress provoked by rapid and continuous changes. We listed some characteristics of the cities providing positive and negative effects on each facet of urban avian diversity.


Asunto(s)
Ecosistema , Urbanización , Animales , Biodiversidad , Aves , Ciudades , Europa (Continente) , Humanos , Filogenia , Fitomejoramiento
16.
Sci Data ; 8(1): 21, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772033

RESUMEN

Around fifteen thousand fieldworkers annually count breeding birds using standardized protocols in 28 European countries. The observations are collected by using country-specific and standardized protocols, validated, summarized and finally used for the production of continent-wide annual and long-term indices of population size changes of 170 species. Here, we present the database and provide a detailed summary of the methodology used for fieldwork and calculation of the relative population size change estimates. We also provide a brief overview of how the data are used in research, conservation and policy. We believe this unique database, based on decades of bird monitoring alongside the comprehensive summary of its methodology, will facilitate and encourage further use of the Pan-European Common Bird Monitoring Scheme results.


Asunto(s)
Aves , Animales , Conservación de los Recursos Naturales , Bases de Datos Factuales , Europa (Continente) , Dinámica Poblacional
17.
BMC Ecol Evol ; 21(1): 41, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691625

RESUMEN

BACKGROUND: It has been proposed that divergence in the gut microbiota composition between incipient species could contribute to their reproductive isolation. Nevertheless, empirical evidence for the role of gut microbiota in speciation is scarce. Moreover, it is still largely unknown to what extent closely related species in the early stages of speciation differ in their gut microbiota composition, especially in non-mammalian taxa, and which factors drive the divergence. Here we analysed the gut microbiota in two closely related passerine species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia). The ranges of these two species overlap in a secondary contact zone, where both species occasionally hybridize and where interspecific competition has resulted in habitat use differentiation. RESULTS: We analysed the gut microbiota from the proximal, middle and distal part of the small intestine in both sympatric and allopatric populations of the two nightingale species using sequencing of bacterial 16S rRNA. We found small but significant differences in the microbiota composition among the three gut sections. However, the gut microbiota composition in the two nightingale species did not differ significantly between either sympatric or allopatric populations. Most of the observed variation in the gut microbiota composition was explained by inter-individual differences. CONCLUSIONS: To our knowledge, this is the first attempt to assess the potential role of the gut microbiota in bird speciation. Our results suggest that neither habitat use, nor geographical distance, nor species identity have strong influence on the nightingale gut microbiota composition. This suggests that changes in the gut microbiota composition are unlikely to contribute to reproductive isolation in these passerine birds.


Asunto(s)
Microbioma Gastrointestinal , Pájaros Cantores , Animales , Ecosistema , ARN Ribosómico 16S/genética , Pájaros Cantores/genética , Simpatría
18.
Proc Biol Sci ; 288(1946): 20202955, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653129

RESUMEN

Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.


Asunto(s)
Migración Animal , Aves , Animales , Conservación de los Recursos Naturales , Europa (Continente) , Dinámica Poblacional
19.
Naturwissenschaften ; 108(2): 9, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580336

RESUMEN

Linking population trends to species' traits is informative for the detection of the most important threatening factors and for assessing the effectiveness of conservation measures. Although some previous studies performed such an analysis at local to continental scales, the global-scale focus is the most relevant for conservation of the entire species. Here we evaluate information on global population trends of shorebirds, a widely distributed and ecologically diversified group, where some species connect different parts of the world by migration, while others are residents. Nowadays, shorebirds face rapid environmental changes caused by various human activities and climate change. Numerous signs of regional population declines have been recently reported in response to these threats. The aim of our study was to test whether breeding and non-breeding habitats, migratory behaviour (migrants vs. residents) and migration distance, breeding latitude, generation time and breeding range size mirror species' global population trends. We found that a majority of shorebird species have declined globally. After accounting for the influence of traits and species taxonomy, linear mixed-effects models showed that populations of migratory shorebirds decreased more than populations of residents. Besides that, declines were more frequent for species breeding at high latitudes of the Northern Hemisphere, but these patterns did not hold after excluding the non-migratory species. Our findings suggest that factors linked to migration, such as habitat loss as well as deterioration at stop-over or wintering sites and a pronounced climate change impact at high latitudes, are possible drivers of the observed worldwide population decreases.


Asunto(s)
Distribución Animal , Migración Animal/fisiología , Conducta Animal/fisiología , Aves/fisiología , Animales , Cambio Climático , Ecosistema , Dinámica Poblacional
20.
Sci Rep ; 10(1): 17592, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067507

RESUMEN

Climate is an important driver of changes in animal population size, but its effect on the underlying demographic rates remains insufficiently understood. This is particularly true for avian long-distance migrants which are exposed to different climatic factors at different phases of their annual cycle. To fill this knowledge gap, we used data collected by a national-wide bird ringing scheme for eight migratory species wintering in sub-Saharan Africa and investigated the impact of climate variability on their breeding productivity and adult survival. While temperature at the breeding grounds could relate to the breeding productivity either positively (higher food availability in warmer springs) or negatively (food scarcity in warmer springs due to trophic mismatch), water availability at the non-breeding should limit the adult survival and the breeding productivity. Consistent with the prediction of the trophic mismatch hypothesis, we found that warmer springs at the breeding grounds were linked with lower breeding productivity, explaining 29% of temporal variance across all species. Higher water availability at the sub-Saharan non-breeding grounds was related to higher adult survival (18% temporal variance explained) but did not carry-over to breeding productivity. Our results show that climate variability at both breeding and non-breeding grounds shapes different demographic rates of long-distance migrants.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Cruzamiento/estadística & datos numéricos , África del Sur del Sahara , Animales , Clima , Cambio Climático , Demografía , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...