Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 200: 117224, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34029871

RESUMEN

The installation of satellite water resource recovery facilities (WRRFs) has strengthened the ability to provide cheap and reliable recycled water to meet the increasing water demand of expanding cities. As a result, recent studies have attempted to address the problem of how to optimally integrate satellite systems with other sectors of the urban sphere, such as the local economy, the power supply, and the regional carbon footprint. However, such studies are merely based on the spatial domain, thus neglecting potential time-dependent strategies that could further improve the sustainability of metropolitan water systems. Therefore, in this study a new conceptual framework is proposed for the dynamic management of hybrid systems comprised of both centralized and satellite WRRFs. Furthermore, a novel set of integrated real-time control (RTC) strategies are considered to analyze three different scenarios: 1) demand response, 2) flow equalization of the centralized WRRF and 3) reduction of greenhouse gas emissions. Data from a case study in California is used to develop an integrated dynamic model of a system of 8 facilities. Our results show that by dynamically shifting the dry-weather influent wastewater flows between hydraulically connected WRRFs, a reduction in power demand (up to 25%), energy use (4%), operating costs (8.5%) and indirect carbon emissions (4.5%) can be achieved. Therefore, this study suggests that a certain degree of hydraulic interconnection coupled with dynamic load-shifting strategies, can broaden the operational flexibility and overall sustainability of hybrid WRRF systems.


Asunto(s)
Purificación del Agua , Huella de Carbono , Ciudades , Efecto Invernadero , Aguas Residuales , Recursos Hídricos
2.
Water Res ; 173: 115537, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32014702

RESUMEN

Diffused aeration is the most implemented method for oxygen transfer in municipal activated sludge systems and governs the economics of the entire treatment process. Empirical observations are typically used to regulate airflow distribution through the adjustment of manual valves. However, due to the associated degrees of freedom, the identification of a combination of manual valves that optimizes all performance criteria is a complex task. For the first time a multi-criteria optimization algorithm was used to minimize effluent constituents and energy use by parametrizing manual valves positions. Data from a full-scale facility in conjunction with specific model assumptions were used to develop a base-case facility consisting of a detailed air supply model, a bio-kinetic model and a clarification model. Compared to the base-case condition, trade-offs analysis showed potential energy savings of up to 13.6% and improvement of effluent quality for NH4+ (up to 68.5%) and NOx (up to 81.6%). Based on two different tariff structures of a local power utility, maximum costs savings of 12800 USD mo-1 to 19000 USD mo-1 were estimated compared to baseline condition.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Reactores Biológicos , Oxígeno , Eliminación de Residuos Líquidos , Calidad del Agua
3.
Sci Total Environ ; 665: 762-773, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790749

RESUMEN

Biosolids or sludge management has become an environmental and economic challenge for water resource recovery facilities (WRRFs) and municipalities around the world. The electric energy and operational costs linked to the solid processing stage can account for 20% and 53% of the overall treatment respectively, and as such they are primary factors among utilities which must be considered while working toward more efficient strategies with less energy use. As part of the growing awareness of greenhouse gas (GHG) emissions, municipal wastewater treatment plants have begun reporting their GHG emission inventories. However, there is not yet a standardized or fully comprehensive CFP analysis for the biosolids management. In this paper, two major metropolitan WRRFs in China and the USA with two different biosolids management approaches were compared in terms of energy and carbon footprint (CFP). Site-specific equipment inventories coupled with state-of-the-art methodologies were used for the carbon and energy intensity assessment. Tailored biosolids management strategies and scenarios were included in the analysis to provide a venue for the reduction of their environmental impact. Co-digestion with food waste (FW) and the economic feasibility of its implementation were proposed as a GHGs mitigation strategy to highlight the energy recovery potential. Although both plants had similar energy intensity, Plant A (Shanghai) exhibited three times larger CFP primarily due to site-specific limitations on their biosolids management. The study showed the potential to improve CFP by 28.8% by selecting convenient strategies (i.e., incineration with AD). Energy recovery with its concurrent environmental benefits can be further enhanced by implementing FW co-digestion. This study shows the economic and environmental relevance of selecting adequate biosolids processing strategies and energy recovery practices in WRRFs.


Asunto(s)
Huella de Carbono , Eliminación de Residuos/métodos , Eliminación de Residuos Líquidos/métodos , China , Ciudades , Los Angeles , Modelos Económicos , Modelos Teóricos , Eliminación de Residuos/economía , Eliminación de Residuos Líquidos/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...