Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(9): 2947-2967, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36930278

RESUMEN

Bacterial cellulose (BC) represents a renewable biomaterial with unique properties promising for biotechnology and biomedicine. Komagataeibacter hansenii ATCC 53,582 is a well-characterized high-yield producer of BC used in the industry. Its genome encodes three distinct cellulose synthases (CS), bcsAB1, bcsAB2, and bcsAB3, which together with genes for accessory proteins are organized in operons of different complexity. The genetic foundation of its high cellulose-producing phenotype was investigated by constructing chromosomal in-frame deletions of the CSs and of two predicted regulatory diguanylate cyclases (DGC), dgcA and dgcB. Proteomic characterization suggested that BcsAB1 was the decisive CS because of its high expression and its exclusive contribution to the formation of microcrystalline cellulose. BcsAB2 showed a lower expression level but contributes significantly to the tensile strength of BC and alters fiber diameter significantly as judged by scanning electron microscopy. Nevertheless, no distinct extracellular polymeric substance (EPS) from this operon was identified after static cultivation. Although transcription of bcsAB3 was observed, expression of the protein was below the detection limit of proteome analysis. Alike BcsAB2, deletion of BcsAB3 resulted in a visible reduction of the cellulose fiber diameter. The high abundance of BcsD and the accessory proteins CmcAx, CcpAx, and BglxA emphasizes their importance for the proper formation of the cellulosic network. Characterization of deletion mutants lacking the DGC genes dgcA and dgcB suggests a new regulatory mechanism of cellulose synthesis and cell motility in K. hansenii ATCC 53,582. Our findings form the basis for rational tailoring of the characteristics of BC. KEY POINTS: • BcsAB1 induces formation of microcrystalline cellulose fibers. • Modifications by BcsAB2 and BcsAB3 alter diameter of cellulose fibers. • Complex regulatory network of DGCs on cellulose pellicle formation and motility.


Asunto(s)
Ácido Acético , Acetobacteraceae , Ácido Acético/metabolismo , Matriz Extracelular de Sustancias Poliméricas , Proteómica , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Celulosa/metabolismo
2.
Biomimetics (Basel) ; 8(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36648823

RESUMEN

The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between core and cladding could be circumvented by using a modified spider silk protein with a cellulose-binding domain-enduring permanent adhesion between the cellulose core and the spider silk cladding. The applied spider silk materials were characterized optically, and the theoretical maximum data rate was determined. The results show optical waveguide structures promising for medical applications, for example, in the future.

3.
Biomacromolecules ; 22(8): 3297-3312, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34270888

RESUMEN

Currently, almost all polymer optical materials are derived from fossil resources with known consequences for the environment. In this work, a processing route to obtain cellulose-based biopolymer optical fibers is presented. For this purpose, the optical properties such as the transmission and the refractive index dispersion of regenerated cellulose, cellulose diacetate, cellulose acetate propionate, and cellulose acetate butyrate were determined from planar films. Cellulose fibers were produced using a simple wet-spinning setup. They were examined pure and also coated with the cellulose derivatives to obtain core-cladding-structured optical fibers. The cellulose-based optical fibers exhibit minimum attenuations between 56 and 82 dB m-1 at around 860 nm. The ultimate transmission loss limit of the cellulose-based optical fibers was simulated to characterize the attenuation progression. By reducing extrinsic losses, cellulose-based biopolymer optical fibers could attain theoretical attenuation minima of 84.6 × 10-3 dB m-1 (507 nm), 320 × 10-3 dB m-1 (674 nm), and 745.2 × 10-3 dB m-1 (837 nm) and might substitute fossil-based polymer optical fibers in the future.


Asunto(s)
Celulosa , Fibras Ópticas , Biopolímeros , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...