Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(2): 113792, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363679

RESUMEN

Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2α deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation.


Asunto(s)
Encefalitis , Herpes Simple , Humanos , Animales , Ratones , Inflamación , Neuronas , Hipoxia , Antivirales/farmacología
2.
EMBO J ; 42(19): e113118, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37646198

RESUMEN

Neurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV-induced neuronal cell death remain enigmatic. Here, we report that lytic HSV-2 infection of human neuron-like SH-SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV-2-induced GSDME-mediated cell death occurs downstream of replication-induced endoplasmic reticulum stress driven by inositol-requiring kinase 1α (IRE1α), leading to activation of caspase-2, cleavage of the pro-apoptotic protein BH3-interacting domain death agonist (BID), and mitochondria-dependent activation of caspase-3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC-derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress-driven pathway to execute GSDME-mediated cell death and promote inflammation.

3.
Sci Adv ; 9(33): eadf5808, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595041

RESUMEN

Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway. TREM2 was found to be important for virus-induced IFNB induction through the DNA-sensing cGAS-STING pathway in microglia and for phagocytosis of HSV1-infected neurons. Consequently, TREM2 depletion increased susceptibility to HSV1 infection in human microglia-neuron cocultures and in the mouse brain. TREM2 augmented STING signaling and activation of downstream targets TBK1 and IRF3. Thus, TREM2 is important for the antiviral immune response in microglia. Since TREM2 loss-of-function mutations and HSV1 serological status are both linked to Alzheimer's disease, this work poses the question whether genetic or virus-induced alterations of TREM2 activity predispose to post-infection neurological pathologies.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Células Madre Pluripotentes Inducidas , Microglía , Animales , Humanos , Ratones , Encéfalo , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
4.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277149

RESUMEN

Critical COVID-19 is characterized by lack of early type I interferon-mediated host defense and subsequent hyper-inflammation in the lungs. Aberrant activation of macrophages and neutrophils has been reported to lead to excessive activation of innate immunological pathways. It has recently been suggested that the DNA-sensing cGAS-STING pathway drives pathology in the SARS-CoV-2-infected lungs, but mechanistic understanding from in vivo models is needed. Here, we tested whether STING is involved in COVID-19-like disease using the K18-hACE2 mouse model. We report that disease development after SARS-CoV-2 infection is unaltered in STING-deficient K18-hACE2 mice. In agreement with this, STING deficiency did not affect control of viral replication or production of interferons and inflammatory cytokines. This was accompanied by comparable profiles of infiltrating immune cells into the lungs of infected mice. These data do not support a role for STING in COVID-19 pathology and calls for further investigation into the pathogenesis of critical COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Ratones , Animales , Inmunidad Innata , Transducción de Señal , SARS-CoV-2/metabolismo , Interferón Tipo I/metabolismo
5.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526097

RESUMEN

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Imidazoles , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Animales , Antivirales/farmacología , Imidazoles/farmacología , Ratones , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Estados Unidos , United States Food and Drug Administration
6.
EMBO J ; 41(10): e109622, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35178710

RESUMEN

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model, we further demonstrate that pDCs, while not supporting SARS-CoV-2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways, we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL-6 response, suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.


Asunto(s)
COVID-19 , Células Dendríticas , Receptor Toll-Like 2 , Receptor Toll-Like 7 , COVID-19/inmunología , COVID-19/patología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/patología , Humanos , Interferón Tipo I/inmunología , Interferón-alfa/inmunología , Interleucina-6/inmunología , Neuropilina-1/inmunología , SARS-CoV-2 , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 7/inmunología
7.
Cell Metab ; 34(1): 125-139.e8, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986331

RESUMEN

Concerted alteration of immune and metabolic homeostasis underlies several inflammation-related pathologies, ranging from metabolic syndrome to infectious diseases. Here, we explored the coordination of nucleic acid-dependent inflammatory responses and metabolic homeostasis. We reveal that the STING (stimulator of interferon genes) protein regulates metabolic homeostasis through inhibition of the fatty acid desaturase 2 (FADS2) rate-limiting enzyme in polyunsaturated fatty acid (PUFA) desaturation. STING ablation and agonist-mediated degradation increased FADS2-associated desaturase activity and led to accumulation of PUFA derivatives that drive thermogenesis. STING agonists directly activated FADS2-dependent desaturation, promoting metabolic alterations. PUFAs in turn inhibited STING, thereby regulating antiviral responses and contributing to resolving STING-associated inflammation. Thus, we have unveiled a negative regulatory feedback loop between STING and FADS2 that fine-tunes inflammatory responses. Our results highlight the role of metabolic alterations in human pathologies associated with aberrant STING activation and STING-targeting therapies.


Asunto(s)
Ácido Graso Desaturasas , Síndrome Metabólico , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Humanos , Inflamación , Metabolismo de los Lípidos
8.
J Virol ; 96(6): e0131121, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045263

RESUMEN

Spread of herpes simplex virus 1 (HSV1) from the periphery to the central nervous system (CNS) can lead to extensive infection and pathological inflammation in the brain, causing herpes simplex encephalitis (HSE). It has been shown that microglia, the CNS-resident macrophages, are involved in early sensing of HSV1 and induction of antiviral responses. In addition, infiltration of peripheral immune cells may contribute to the control of viral infection. In this study, we tested the effect of microglia depletion in a mouse model of HSE. Increased viral titers and increased disease severity were observed in microglia-depleted mice. The effect of microglia depletion was more pronounced in wild-type than in cGas-/- mice, revealing that this immune sensor contributes to the antiviral activity of microglia. Importantly, microglia depletion led to reduced production of type I interferon (IFN), proinflammatory cytokines, and chemokines at early time points after viral entry into the CNS. In line with this, in vitro experiments on murine primary CNS cells demonstrated microglial presence to be essential for IFN RNA induction, and control of HSV1 replication. However, the effect of microglia depletion on the expression of IFNs, and inflammatory cytokines was restricted to the early time point of HSV1 entry into the CNS. There was no major alteration of infiltration of CD45-positive cells in microglia-depleted mice. Collectively, our data demonstrate a key role for microglia in controlling HSV1 replication early after viral entry into the CNS and highlight the importance of a prompt antiviral innate response to reduce the risk of HSE development. IMPORTANCE One of the most devastating and acute neurological conditions is encephalitis, i.e., inflammation of brain tissue. Herpes simplex virus 1 (HSV1) is a highly prevalent pathogen in humans, and the most frequent cause of viral sporadic encephalitis called herpes simplex encephalitis (HSE). HSV1 can infect peripheral neurons and reach the central nervous system (CNS) of humans, where it can be detected by brain resident cells and infiltrating immune cells, leading to protective and damaging immune responses. In this study, we investigated the effects of microglia depletion, the main brain-resident immune cell type. For this purpose, we used a mouse model of HSE. We found that viral levels increased, and disease symptoms worsened in microglia-depleted mice. In addition, mice lacking a major sensor of viral DNA, cGAS, manifested a more pronounced disease than wild-type mice, highlighting the importance of this immune sensor in the activity of microglia. Microglia depletion led to reduced production of many known antiviral factors, most notably type I interferon (IFN). The importance of microglia in the early control of HSV1 spread and the generation of antiviral responses is further demonstrated by experiments on murine mixed glial cell cultures. Interestingly, mice with microglia depletion exhibited an unaltered activation of antiviral responses and recruitment of immune cells from the periphery at later time points of infection, but this did not prevent the development of the disease. Overall, the data highlight the importance of rapid activation of the host defense, with microglia playing a critical role in controlling HSV1 infection, which eventually prevents damage to neurons and brain tissue.


Asunto(s)
Encefalitis por Herpes Simple , Herpesvirus Humano 1 , Inmunidad , Interferón Tipo I , Microglía , Internalización del Virus , Animales , Encéfalo/inmunología , Encéfalo/virología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis por Herpes Simple/inmunología , Encefalitis por Herpes Simple/fisiopatología , Herpesvirus Humano 1/metabolismo , Inmunidad/inmunología , Inflamación/patología , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/virología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876524

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Humanos , Mutación , Pruebas de Neutralización , Conformación de Ácido Nucleico , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/fisiología , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Elife ; 102021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821555

RESUMEN

The alpha/B.1.1.7 SARS-CoV-2 lineage emerged in autumn 2020 in the United Kingdom and transmitted rapidly until winter 2021 when it was responsible for most new COVID-19 cases in many European countries. The incidence domination was likely due to a fitness advantage that could be driven by the receptor-binding domain (RBD) residue change (N501Y), which also emerged independently in other variants of concern such as the beta/B.1.351 and gamma/P.1 strains. Here, we present a functional characterization of the alpha/B.1.1.7 variant and show an eightfold affinity increase towards human angiotensin-converting enzyme-2 (ACE-2). In accordance with this, transgenic hACE2 mice showed a faster disease progression and severity after infection with a low dose of B.1.1.7, compared to an early 2020 SARS-CoV-2 isolate. When challenged with sera from convalescent individuals or anti-RBD monoclonal antibodies, the N501Y variant showed a minor, but significant elevated evasion potential of ACE-2/RBD antibody neutralization. The data suggest that the single asparagine to tyrosine substitution remarkable rise in affinity may be responsible for the higher transmission rate and severity of the B.1.1.7 variant.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/genética , COVID-19/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Mutación Missense , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Reino Unido
11.
Immunity ; 54(7): 1478-1493.e6, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34015257

RESUMEN

Viral infections during pregnancy are a considerable cause of adverse outcomes and birth defects, and the underlying mechanisms are poorly understood. Among those, cytomegalovirus (CMV) infection stands out as the most common intrauterine infection in humans, putatively causing early pregnancy loss. We employed murine CMV as a model to study the consequences of viral infection on pregnancy outcome and fertility maintenance. Even though pregnant mice successfully controlled CMV infection, we observed highly selective, strong infection of corpus luteum (CL) cells in their ovaries. High infection densities indicated complete failure of immune control in CL cells, resulting in progesterone insufficiency and pregnancy loss. An abundance of gap junctions, absence of vasculature, strong type I interferon (IFN) responses, and interaction of innate immune cells fully protected the ovarian follicles from viral infection. Our work provides fundamental insights into the effect of CMV infection on pregnancy loss and mechanisms protecting fertility.


Asunto(s)
Cuerpo Lúteo/inmunología , Infecciones por Citomegalovirus/inmunología , Fertilidad/inmunología , Inmunidad Innata/inmunología , Animales , Cuerpo Lúteo/virología , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Femenino , Uniones Comunicantes/inmunología , Interferón Tipo I/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Embarazo , Progesterona/inmunología
12.
Nat Commun ; 12(1): 324, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436573

RESUMEN

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , Cápside/inmunología , Unión Proteica/inmunología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Femenino , Humanos , Inmunogenicidad Vacunal , Cinética , Ratones , Ratones Endogámicos BALB C , Unión Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Pruebas Serológicas , Glicoproteína de la Espiga del Coronavirus/inmunología
13.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32990676

RESUMEN

Protection of the brain from viral infections involves the type I IFN (IFN-I) system, defects in which render humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels lead to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we showed that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, whereas lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices or mice treated with a caspase inhibitor exhibited lower viral load and an improved infection outcome. Collectively, we identify an activation-induced apoptosis program in brain immune cells that downmodulates local immune responses.


Asunto(s)
Encéfalo/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Animales , Apoptosis/genética , Apoptosis/inmunología , Encéfalo/virología , Herpes Simple/genética , Humanos , Interferón Tipo I/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Microglía/inmunología , Microglía/virología , Nucleotidiltransferasas/genética
14.
Nat Commun ; 11(1): 4938, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009401

RESUMEN

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Dimetilfumarato/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Neumonía Viral/tratamiento farmacológico , Succinatos/agonistas , Adulto , Antioxidantes/farmacología , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Dimetilfumarato/farmacología , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interferón Tipo I , Pulmón/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Succinatos/farmacología , Replicación Viral/efectos de los fármacos
17.
Nat Immunol ; 21(8): 868-879, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690950

RESUMEN

STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PtdIns(3)P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP, leading to increased ER PtdIns(3)P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Animales , Retículo Endoplásmico/inmunología , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Proteínas del Tejido Nervioso/inmunología , Proteínas Nucleares , Transporte de Proteínas/fisiología
18.
J Exp Med ; 217(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32383759

RESUMEN

Herpes simplex virus (HSV) is the main cause of viral encephalitis in the Western world, and the type I interferon (IFN) system is important for antiviral control in the brain. Here, we have compared Ifnb induction in mixed murine brain cell cultures by a panel of HSV1 mutants, each devoid of one mechanism to counteract the IFN-stimulating cGAS-STING pathway. We found that a mutant lacking the deubiquitinase (DUB) activity of the VP1-2 protein induced particularly strong expression of Ifnb and IFN-stimulated genes. HSV1 ΔDUB also induced elevated IFN expression in murine and human microglia and exhibited reduced viral replication in the brain. This was associated with increased ubiquitination of STING and elevated phosphorylation of STING, TBK1, and IRF3. VP1-2 associated directly with STING, leading to its deubiquitination. Recruitment of VP1-2 to STING was dependent on K150 of STING, which was ubiquitinated by TRIM32. Thus, the DUB activity of HSV1 VP1-2 is a major viral immune-evasion mechanism in the brain.


Asunto(s)
Encéfalo/virología , Enzimas Desubicuitinizantes/metabolismo , Herpesvirus Humano 1/metabolismo , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Virales/metabolismo , Animales , Encéfalo/patología , Células Cultivadas , Citoplasma/metabolismo , ADN Viral/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Mutación/genética , Nucleotidiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación , Replicación Viral/fisiología
19.
PLoS Pathog ; 15(12): e1008155, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31856218

RESUMEN

Cellular response to environmental challenges requires immediate and precise regulation of transcriptional programs. During viral infections, this includes the expression of antiviral genes that are essential to combat the pathogen. Transcribed mRNAs are bound and escorted to the cytoplasm by the cap-binding complex (CBC). We recently identified a protein complex consisting of NCBP1 and NCBP3 that, under physiological conditions, has redundant function to the canonical CBC, consisting of NCBP1 and NCBP2. Here, we provide evidence that NCBP3 is essential to mount a precise and appropriate antiviral response. Ncbp3-deficient cells allow higher virus growth and elicit a reduced antiviral response, a defect happening on post-transcriptional level. Ncbp3-deficient mice suffered from severe lung pathology and increased morbidity after influenza A virus challenge. While NCBP3 appeared to be particularly important during viral infections, it may be more broadly involved to ensure proper protein expression.


Asunto(s)
Infecciones por Orthomyxoviridae/inmunología , Proteínas de Unión a Caperuzas de ARN/inmunología , Proteínas de Unión a Caperuzas de ARN/metabolismo , Animales , Virus de la Influenza A/inmunología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/metabolismo , Biosíntesis de Proteínas/fisiología
20.
Nat Rev Immunol ; 19(3): 141-153, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30644449

RESUMEN

The immune system detects disturbances in homeostasis that occur during infection, sterile tissue damage and cancer. This initiates immune responses that seek to eliminate the trigger of immune activation and to re-establish homeostasis. At the same time, these mechanisms can also play a crucial role in the progression of disease. The occurrence of DNA in the cytosol constitutes a potent trigger for the innate immune system, governing the production of key inflammatory cytokines such as type I interferons and IL-1ß. More recently, it has become clear that cytosolic DNA also triggers other biological responses, including various forms of programmed cell death. In this article, we review the emerging literature on the pathways governing DNA-stimulated cell death and the current knowledge on how these processes shape immune responses to exogenous and endogenous challenges.


Asunto(s)
ADN/inmunología , Inmunidad Innata/inmunología , Infecciones/inmunología , Inflamación/inmunología , Neoplasias/inmunología , Muerte Celular Regulada/inmunología , Apoptosis/inmunología , Muerte Celular Autofágica/inmunología , Citosol/inmunología , Proteínas de Unión al ADN/inmunología , Humanos , Interferón Tipo I/inmunología , Interleucina-1beta/inmunología , Necroptosis/inmunología , Piroptosis/inmunología , Receptor Toll-Like 9/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA