Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 451(7176): 330-4, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-18202657

RESUMEN

Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.


Asunto(s)
Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores de GABA-A/metabolismo , Médula Espinal/metabolismo , Analgésicos/administración & dosificación , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Capsaicina/farmacología , Enfermedad Crónica/tratamiento farmacológico , Diazepam/administración & dosificación , Diazepam/metabolismo , Diazepam/farmacología , Modelos Animales de Enfermedad , Fluorobencenos/metabolismo , Fluorobencenos/farmacología , Formaldehído , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Calor , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos , Dolor/inducido químicamente , Dolor/prevención & control , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/química , Receptores de GABA-A/genética , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Triazoles/metabolismo , Triazoles/farmacología
2.
Pain ; 126(1-3): 46-53, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16846696

RESUMEN

Inflammation, peripheral nerve injury and chemical irritants can cause central sensitization in pain pathways. Prostaglandins produced in the CNS induce central sensitization during inflammation mainly by relieving nociceptive neurons from glycinergic inhibition. We have recently identified spinal prostaglandin E receptors of the EP2 subtype (EP2 receptors) and the glycine receptor alpha3 subunit (GlyR alpha3) as signal transduction elements involved in the generation of central inflammatory hyperalgesia. It is however still unknown to what extent inhibition of glycine receptors by PGE2 contributes to neuropathic or chemically induced pain. To address this question, we have analyzed mice deficient in the EP2 receptor (EP2-/- mice) or in the GlyR alpha3 subunit (GlyR alpha3-/- mice) using the chronic constriction injury (CCI) model of neuropathic pain and the formalin test. We found that EP2-/- mice and GlyR alpha3-/- mice develop thermal and mechanical hyperalgesia in the CCI model indistinguishable from that seen in wild-type mice. In the formalin test, EP2-/- mice, but not GlyR alpha3-/- mice, exhibited reduced nocifensive behavior. The lack of a phenotype in GlyR alpha3-/- mice together with the absence of a facilitating effect of intrathecal PGE2 on formalin-induced nociception in wild-type mice suggests that peripheral rather than spinal EP2 receptors are involved. These results indicate that inhibition of glycinergic neurotransmission by EP2 receptor activation does not contribute to pain following peripheral nerve injury or chemical irritation with formalin. Our results thus provide further evidence that inflammatory hyperalgesia and neuropathic pain involve different mechanisms of central sensitization.


Asunto(s)
Formaldehído , Neuralgia/fisiopatología , Dolor/inducido químicamente , Dolor/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Receptores de Glicina/metabolismo , Receptores de Prostaglandina E/metabolismo , Médula Espinal/metabolismo , Animales , Formaldehído/administración & dosificación , Hiperalgesia/etiología , Inflamación/etiología , Inyecciones , Ratones , Ratones Noqueados , Dimensión del Dolor , Receptores de Glicina/deficiencia , Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E
3.
Proc Natl Acad Sci U S A ; 102(36): 12938-43, 2005 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16118273

RESUMEN

Heat sensitivity shows considerable functional variability in humans and laboratory animals, and is fundamental to inflammatory and possibly neuropathic pain. In the mouse, at least, much of this variability is genetic because inbred strains differ robustly in their behavioral sensitivity to noxious heat. These strain differences are shown here to reflect differential responsiveness of primary afferent thermal nociceptors to heat stimuli. We further present convergent behavioral and electrophysiological evidence that the variable responses to noxious heat are due to strain-dependence of CGRP expression and sensitivity. Strain differences in behavioral response to noxious heat could be abolished by peripheral injection of CGRP, blockade of cutaneous and spinal CGRP receptors, or long-term inactivation of CGRP with a CGRP-binding Spiegelmer. Linkage mapping supports the contention that the genetic variant determining variable heat pain sensitivity across mouse strains affects the expression of the Calca gene that codes for CGRPalpha.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/genética , Regulación de la Expresión Génica , Calor/efectos adversos , Umbral del Dolor/fisiología , Animales , Electrofisiología , Femenino , Masculino , Ratones , Ratones Endogámicos , Nociceptores/metabolismo , Dimensión del Dolor , Especificidad de la Especie
4.
J Clin Invest ; 115(3): 673-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15719070

RESUMEN

Blockade of prostaglandin (PG) production by COX inhibitors is the treatment of choice for inflammatory pain but is also prone to severe side effects. Identification of signaling elements downstream of COX inhibition, particularly of PG receptor subtypes responsible for pain sensitization (hyperalgesia), provides a strategy for better-tolerated analgesics. Here, we have identified PGE2 receptors of the EP2 receptor subtype as key signaling elements in spinal inflammatory hyperalgesia. Mice deficient in EP2 receptors (EP2-/- mice) completely lack spinal PGE2-evoked hyperalgesia. After a peripheral inflammatory stimulus, EP2-/- mice exhibit only short-lasting peripheral hyperalgesia but lack a second sustained hyperalgesic phase of spinal origin. Electrophysiological recordings identify diminished synaptic inhibition of excitatory dorsal horn neurons as the dominant source of EP2 receptor-dependent hyperalgesia. Our results thus demonstrate that inflammatory hyperalgesia can be treated by targeting of a single PG receptor subtype and provide a rational basis for new analgesic strategies going beyond COX inhibition.


Asunto(s)
Hiperalgesia/inmunología , Hiperalgesia/metabolismo , Receptores de Prostaglandina E/metabolismo , Médula Espinal/fisiología , Animales , Conducta Animal/fisiología , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa , Femenino , Glicina/metabolismo , Calor , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Dolor/metabolismo , Dimensión del Dolor , Técnicas de Placa-Clamp , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/administración & dosificación , Prostaglandinas/metabolismo , Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E , Transducción de Señal/fisiología , Médula Espinal/citología , Transmisión Sináptica
5.
Science ; 304(5672): 884-7, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15131310

RESUMEN

Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.


Asunto(s)
Dinoprostona/metabolismo , Inflamación/fisiopatología , Dolor/fisiopatología , Células del Asta Posterior/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinoprostona/administración & dosificación , Dinoprostona/farmacología , Femenino , Adyuvante de Freund , Glicina/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Receptores de Glicina/química , Receptores de Glicina/genética , Transducción de Señal , Transmisión Sináptica , Transfección , Zimosan
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...