RESUMEN
This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet of broilers on the expression of matrix metallopeptidase 9 (MMP-9) and metallopeptidase inhibitor 2 (TIMP-2) genes, the synthesis of proteoglycans, collagen type II and chondrocytes, bone and cartilage macroscopy, bone mineral densitometry, bone breaking strength and mineral profile. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate: 0.00, 0.05, and 0.10%; and 3 levels of glucosamine sulfate: 0.00, 0.15, and 0.30%), totaling 9 treatments. At 21 and 42 d of age, broilers were slaughtered, and tibias and femurs were collected for evaluation. There was an interaction (P < 0.05) of sulfates for the expression of MMP-9 and its inhibitor TIMP-2 in femur articular cartilage, as well as for the number of chondrocytes, collagen type II and proteoglycans in tibia articular cartilage, bone and cartilage macroscopy and mineral profile (P < 0.05), with better results obtained with the inclusion of chondroitin and/or glucosamine sulfates in the feed. In conclusion, chondroitin and glucosamine sulfates can be used in broiler diets in order to favor the development of the structure of the locomotor system (bones and joints), thus preventing locomotion problems.
Asunto(s)
Cartílago Articular , Glicosaminoglicanos , Animales , Glicosaminoglicanos/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/farmacología , Pollos , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/farmacología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Glucosamina/metabolismo , Glucosamina/farmacología , Minerales/metabolismo , Sulfatos/metabolismoRESUMEN
BACKGROUND: Systemic arterial hypertension (SAH) is a multifactorial condition that already affects one third of the worldwide population. The identification of candidate genes for hypertension is a challenge for the next years. Nevertheless, the small contribution of each individual genetic factor to the disease brings the necessity of evaluate genes in an integrative manner and taking into consideration the physiological interaction of functions. Angiotensin I-converting enzymes, ACE and ACE2, are key regulators of blood pressure that have counterbalance roles by acting on vasoactive peptides from Renin-Angiotensin-Aldosterone System (RAAS). Insertion/deletion (I/D) polymorphism of ACE gene and single nucleotide polymorphism G8790A of ACE2 gene have been associated with susceptibility to SAH, but the literature is controversial. We proposed to evaluate these two polymorphisms jointly exploring the combined effects of ACE and ACE2 genotypes on SAH susceptibility, an approach that have not been done yet for ACE and ACE2 polymorphisms. METHODS AND FINDINGS: This genetic association study included 117 hypertensive (mean age 59.7 years) patients and 123 normotensive and diabetes-free controls (mean age 57.5 years). ACE and ACE2 polymorphisms were genotyped by SYBR Green real-time PCR and RFLP-PCR, respectively. Crude and adjusted odds ratio (OR) values were calculated to estimate the susceptibility to SAH development. It was obtained homogeneity regarding distribution by sex, age range, smoking, alcohol consumption and body mass index (BMI) between case and control groups. No-association was verified for each gene individually, but the combination of ACE and ACE2 polymorphisms on female gender revealed a significative association for DD/G_ carriers who had a 3-fold increased risk to SAH development (p = 0.03), with a stronger susceptibility on DD/GG carriers (7-fold increased risk, p = 0.01). The D allele of ACE showed association with altered levels of lipid profile variables on case group (VLDL-cholesterol, p = 0.01) and DD genotype in all individuals analysis (triglycerides, p = 0.01 and VLDL-cholesterol, p = 0.01). CONCLUSION: These findings indicate that the combination of ACE and ACE2 polymorphisms effects may play a role in SAH predisposition been the DD/G_ genotype the susceptibility profile. This result allowed us to raise the hypothesis that an increased activity of ACE (prohypertensive effects) in conjunction with reduced ACE2 activity (antihypertensive effects) could be the underlining mechanism. The association of ACE D allele with lipid alterations indicate that this can be a marker of poor prognostic on SAH evolution and contribute to CVD development. Although these preliminary findings must be confirmed by further researches with larger sample size, we could observe that the integrative analysis of ACE and ACE2 can be an informative tool in hypertension understanding that needs to be explored in new studies.
Asunto(s)
Dislipidemias/epidemiología , Predisposición Genética a la Enfermedad , Hipertensión/genética , Peptidil-Dipeptidasa A/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Alelos , Enzima Convertidora de Angiotensina 2 , Presión Sanguínea/genética , Brasil/epidemiología , Estudios de Casos y Controles , Dislipidemias/genética , Femenino , Estudios de Seguimiento , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Hipertensión/epidemiología , Mutación INDEL , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Factores Sexuales , Adulto JovenRESUMEN
BACKGROUND: The role of oxidative stress in schizophrenia has been demonstrated, particularly in subjects with treatment-resistant schizophrenia (TRS). In such patients, the decreased levels of antioxidants in conjunction with the increased generation of reactive oxygen species in the brain exposes the neurons to a higher risk of damage. METHODS AND FINDINGS: We evaluated the association of deletion polymorphisms of two genes of the antioxidant Glutathione S-Transferase family, GSTT1 and GSTM1, with susceptibility to TRS. A total of 54 TRS patients (mean age 38.7 years) and 78 healthy control subjects (mean age 39.0 years) were enrolled in this study. The subjects were matched by sex, age, and smoking and alcohol consumption habits. In the case group, the frequencies of GSTT1-null and GSTM1-null genotypes were 24.1 and 51.9%, respectively, whereas for the control group, the frequencies were 12.8 and 46.2%, respectively. Analysis performed with respect to the risk of developing TRS associated with the GSTT1 and GSTM1 deletion polymorphisms, resulted in odds ratio (OR) values of 2.1 and 1.2, respectively. However, the association was not found to be significant (p = 0.1229 and p = 0.5916, respectively). The analysis performed with respect to the combined genotypes of GSTT1 and GSTM1 revealed that the double-null genotype confers a 4.6-fold increased risk of developing TRS (p = 0.0412). CONCLUSION: The results of the present study indicate that a combination of GST deficiencies may play a role in enhanced susceptibility to TRS, and the present genotype of one of these genes may buffer the deficiency caused by the lack (null genotype) of the other. The results suggest that combined deletion polymorphisms of GSTT1 and GSTM1 can have implications in the prediction of the clinical course of the disease.
Asunto(s)
Estudio de Asociación del Genoma Completo , Genotipo , Glutatión Transferasa/genética , Esquizofrenia/genética , Adolescente , Adulto , Anciano , Brasil , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esquizofrenia/tratamiento farmacológico , Adulto JovenRESUMEN
Acute plasma hypernatremia induces several cardiovascular and sympathetic responses. It is conceivable that these responses contribute to rapid sodium excretion and restoration of normal conditions. Afferent pathways mediating these responses are not entirely understood. The present study analyses the effects of acute carotid chemoreceptor inactivation on cardiovascular and sympathetic responses induced by infusion of hypertonic saline (HS). All experiments were performed on anesthetized male Wistar rats instrumented for recording of arterial blood pressure (ABP), renal blood flow (RBF) and renal sympathetic nerve activity (RSNA). Animals were subjected to sham surgery or carotid chemoreceptor inactivation by bilateral ligation of the carotid body artery (CBA). In sham rats (n=8), intravenous infusion of HS (3 M NaCl, 1.8 ml/kg b.wt.) elicited a transient increase (9±2mmHg) in ABP, and long lasting (30 min) increases in RBF (138±5%) and renal vascular conductance (RVC) (128±5%) with concurrent decrease in RSNA (-19±4%). In rats submitted to CBA ligation (n=8), the pressor response to HS was higher (24±2mmHg; p<0.05). However, RBF and RVC responses to HS infusion were significantly reduced (113±5% and 93±4%, respectively) while RSNA was increased (13±2%). When HS (3M NaCl, 200µl) was administrated into internal carotid artery (ICA), distinct sympathetic and cardiovascular responses were observed. In sham-group, HS infusion (3M NaCl, 200µl) into ICA promoted an increase in ABP (26±8mmHg) and RSNA (29±13%). In CBA rats, ABP (-3±5.6mmHg) remained unaltered despite sympathoinhibition (-37.6±5.4%). These results demonstrate that carotid body chemoreceptors play a role in the development of hemodynamic and sympathetic responses to acute HS infusion.
Asunto(s)
Cuerpo Carotídeo/metabolismo , Cloruro de Sodio/administración & dosificación , Animales , Masculino , Ratas , Ratas WistarRESUMEN
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g) were anesthetized with sodium thiopental (40 mg. kg(-1), i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (nâ=â6), OT infusion (0.03 µg ⢠kg(-1), i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml ⢠kg(-1) b.wt., i.v.) was infused over 60 s. In sham rats (nâ=â6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg ⢠kg(-1) ⢠h(-1), i.v.; nâ=â7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; nâ=â7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.
Asunto(s)
Vías Eferentes , Hipernatremia/fisiopatología , Oxitocina/farmacología , Arteria Renal/patología , Solución Salina Hipertónica/farmacología , Vasodilatación/efectos de los fármacos , Animales , Frecuencia Cardíaca , Masculino , Oxitócicos/farmacología , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Arteria Renal/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
BACKGROUND: Due to the activity of GSTs in the detoxification of oxidative stress products, deletion polymorphisms of GSTM1 and GSTT1 may contribute to susceptibility to T2DM, since B-cells express very low levels of antioxidant enzymes. Recently, some studies have shown an association between GSTM1-null/GSTT1-null genotypes and an increased susceptibility to T2DM. A relationship between these polymorphisms and changes in the clinical parameters of diabetic patients has also been investigated. However, the results diverge considerably among the studies. Thus, this case-control study was designed to contribute to existing knowledge, as there are no studies on this issue performed in the Brazilian population. METHODS AND FINDINGS: A total of 120 patients and 147 healthy individuals were included in this study. GSTT1 and GSTM1 deletion polymorphisms were genotyped by multiplex SYBR Green Real-Time PCR. The GSTT1-null genotype conferred a 3.2-fold increased risk to T2DM relative to the present genotype. There was no association between GSTM1-null and T2DM risk. In diabetic patients, GSTT1-null conferred higher levels of triglycerides and VLDL-cholesterol, while GSTM1-null was associated with increased levels of fasting blood glucose, glycated hemoglobin and blood pressure. We emphasized a necessity for applying log-linear analysis in order to explore an interaction between these polymorphisms properly. CONCLUSION: These results suggest that the GSTT1 polymorphism may play an important role in the pathogenesis of T2DM in the Brazilian population. This gene could then be added to a set of genetic markers to identify individuals with an increased risk for developing T2DM and complications associated with dyslipidemia in diabetic patients. Although there was no association of GSTM1 deletion polymorphism with susceptibility to T2DM, the influence of this polymorphism on important clinical parameters related to glycemia and blood pressure levels was verified. This finding suggests that both GSTM1-null and GSTT1-null may contribute to the clinical course of T2DM patients.