Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 102: 481-493, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29579709

RESUMEN

Piperazine is a promising scaffold for drug development due to its broad spectrum of biological activities. Based on this, the new piperazine-containing compound LQFM018 (2) [ethyl 4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)piperazine-1-carboxylate] was synthetized and some biological activities investigated. In this work, we described its ability to bind aminergic receptors, antiproliferative effects as well as the LQFM018 (2)-triggered cell death mechanisms, in K562 leukemic cells, by flow cytometric analyses. Furthermore, acute oral systemic toxicity and potential myelotoxicity assessments of LQFM018 (2) were carried out. LQFM018 (2) was originally obtained by molecular simplification from LASSBio579 (1), an analogue compound of clozapine, with 33% of global yield. Binding profile assay to aminergic receptors showed that LQFM018 (2) has affinity for the dopamine D4 receptor (Ki = 0.26 µM). Moreover, it showed cytotoxicity in K562 cells, in a concentration and time-dependent manner; IC50 values obtained were 399, 242 and 119 µM for trypan blue assay and 427, 259 and 50 µM for MTT method at 24, 48 or 72 h, respectively. This compound (427 µM) also promoted increase in LDH release and cell cycle arrest in G2/M phase. Furthermore, it triggered necrotic morphologies in K562 cells associated with intense cell membrane rupture as confirmed by Annexin V/propidium iodide double-staining. LQFM018 (2) also triggered mitochondrial disturb through loss of ΔΨm associated with increase of ROS production. No significant accumulation of cytosolic cytochrome c was verified in treated cells. Furthermore, it was verified an increase of expression of TNF-R1 and mRNA levels of CYLD with no involviment in caspase-3 and -8 activation and NF-κB in K562 cells. LQFM018 (2) showed in vitro myelotoxicity potential, but it was orally well tolerated and classified as UN GHS category 5 (LD50 > 2000-5000 mg/Kg). Thus, LQFM018 (2) seems to have a non-selective action considering hematopoietic cells. In conclusion, it is suggested LQFM018 (2) promotes cell death in K562 cells via necroptotic signaling, probably with involvement of dopamine D4 receptor. These findings open new perspectives in cancer therapy by use of necroptosis inducing agents as a strategy of reverse cancer cell chemoresistance.


Asunto(s)
Apoptosis/efectos de los fármacos , Piperazinas/farmacología , Receptores de Dopamina D4/metabolismo , Pruebas de Toxicidad , Células 3T3 , Administración Oral , Animales , Unión Competitiva/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Ciclo Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Citocromos c/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Exocitosis/efectos de los fármacos , Femenino , Humanos , Células K562 , Cinética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Necrosis , Fosfatidilserinas/metabolismo , Piperazina , Piperazinas/síntesis química , Piperazinas/química , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...