Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proteomics Clin Appl ; : e202400018, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923810

RESUMEN

PURPOSE: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN: A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS: Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE: A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.

2.
Mitochondrion ; 78: 101905, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797357

RESUMEN

Pathogenic ACAD9 variants cause complex I deficiency. Patients presenting in infancy unresponsive to riboflavin have high mortality. A six-month-old infant presented with riboflavin unresponsive lactic acidosis and life-threatening cardiomyopathy. Treatment with high dose bezafibrate and nicotinamide riboside resulted in marked clinical improvement including reduced lactate and NT-pro-brain type natriuretic peptide levels, with stabilized echocardiographic measures. After a long stable period, the child succumbed from cardiac failure with infection at 10.5 months. Therapy was well tolerated. Peak bezafibrate levels exceeded its EC50. The clinical improvement with this treatment illustrates its potential, but weak PPAR agonist activity of bezafibrate limited its efficacy.

3.
J Cannabis Res ; 6(1): 10, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429800

RESUMEN

BACKGROUND: While the use of orally consumed Cannabis, cannabidiol (CBD) and tetrahydrocannabinol (THC) containing products, i.e. "edibles", has expanded, the health consequences are still largely unknown. This study examines the effects of oral consumption of whole Cannabis and a complex Cannabis extract on neurochemicals, endocannabinoids (eCB), and physiological parameters (body temperature, heart rate) in mice. METHODS: In this pilot study, C57BL/6 J mice were treated with one of the following every other day for 2 weeks: a complex Cannabis extract by gavage, whole Cannabis mixed with nutritional gel through free feeding, or purified THC/CBD by intraperitoneal (i.p.) injection. Treatments were conducted at 4 doses ranging from 0-100 mg/kg/day of CBD with THC levels of ≤ 1.2 mg/kg/day for free feeding and gavage and 10 mg/kg/day for i.p. Body temperature and heart rate were monitored using surgically implanted telemetry devices. Levels of neurochemicals, eCB, THC, CBD, and 11-OH-THC were measured using mass spectrometry 48 h after the final treatment. Statistical comparisons were conducted using ANOVA and t-tests. RESULTS: Differences were found between neurochemicals in the brains and plasma of mice treated by i.p. (e.g. dopamine, p < 0.01), gavage (e.g., phenylalanine, p < 0.05) and in mice receiving whole Cannabis (e.g., 3,4-dihydroxyphenylacetic DOPAC p < 0.05). Tryptophan trended downward or was significantly decreased in the brain and/or plasma of all mice receiving Cannabis or purified CBD/THC, regardless of dose, compared to controls. Levels of the eCB, arachidonoyl glycerol (2-AG) were decreased in mice receiving lowest doses of a complex Cannabis extract by gavage, but were higher in mice receiving highest doses compared to controls (p < 0.05). Plasma and brain levels of THC and 11-OH-THC were higher in mice receiving 1:1 THC:CBD by i.p. compared to those receiving 1:5 or 1:10 THC:CBD. Nominal changes in body temperature and heart rate following acute and repeated exposures were seen to some degree in all treatments. CONCLUSIONS: Changes to neurochemicals and eCBs were apparent at all doses regardless of treatment type. Levels of neurochemicals seemed to vary based on the presence of a complex Cannabis extract, suggesting a non-linear response between THC and neurochemicals following repeated oral dosing.

4.
Toxicol Appl Pharmacol ; 483: 116834, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266871

RESUMEN

PURPOSE: Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.


Asunto(s)
Sustancias para la Guerra Química , Lesiones de la Cornea , Gas Mostaza , Animales , Conejos , Gas Mostaza/toxicidad , Sustancias para la Guerra Química/toxicidad , Mediadores de Inflamación/metabolismo , Actinas/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Córnea/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Dexametasona/efectos adversos
5.
J Nutr ; 154(1): 26-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918675

RESUMEN

BACKGROUND: Nutrimetabolomics allows for the comprehensive analysis of foods and human biospecimens to identify biomarkers of intake and begin to probe their associations with health. Salmon contains hundreds of compounds that may provide cardiometabolic benefits. OBJECTIVES: We used untargeted metabolomics to identify salmon food-specific compounds (FSCs) and their predicted metabolites that were found in plasma after a salmon-containing Mediterranean-style (MED) diet intervention. Associations between changes in salmon FSCs and changes in cardiometabolic health indicators (CHIs) were also explored. METHODS: For this secondary analysis of a randomized, crossover, controlled feeding trial, 41 participants consumed MED diets with 2 servings of salmon per week for 2 5-wk periods. CHIs were assessed, and fasting plasma was collected pre- and postintervention. Plasma, salmon, and 99 MED foods were analyzed using liquid chromatography-mass spectrometry-based metabolomics. Compounds were characterized as salmon FSCs if detected in all salmon replicates but none of the other foods. Metabolites of salmon FSCs were predicted using machine learning. For salmon FSCs and metabolites found in plasma, linear mixed-effect models were used to assess change from pre- to postintervention and associations with changes in CHIs. RESULTS: Relative to the other 99 MED foods, there were 508 salmon FSCs with 237 unique metabolites. A total of 143 salmon FSCs and 106 metabolites were detected in plasma. Forty-eight salmon FSCs and 30 metabolites increased after the intervention (false discovery rate <0.05). Increases in 2 annotated salmon FSCs and 2 metabolites were associated with improvements in CHIs, including total cholesterol, low-density lipoprotein cholesterol, triglycerides, and apolipoprotein B. CONCLUSIONS: A data-driven nutrimetabolomics strategy identified salmon FSCs and their predicted metabolites that were detectable in plasma and changed after consumption of a salmon-containing MED diet. Findings support this approach for the discovery of compounds in foods that may serve, upon further validation, as biomarkers or act as bioactive components influential to health. The trials supporting this work were registered at NCT02573129 (Mediterranean-style diet intervention) and NCT05500976 (ongoing clinical trial).


Asunto(s)
Enfermedades Cardiovasculares , Dieta Mediterránea , Humanos , Animales , Salmón , Alimentos Marinos , Colesterol , Biomarcadores , Enfermedades Cardiovasculares/prevención & control , Dieta
6.
Foods ; 12(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37627983

RESUMEN

Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion's mane, maitake, oyster, and shiitake mushrooms using untargeted liquid chromatography mass spectrometry (LC/MS)-based metabolomics. We also quantified amino acid concentrations, including L-ergothioneine, a potential antioxidant which is not synthesized by plants or animals. Among the seven mushroom varieties, more than 10,000 compounds were detected. Principal Component Analysis indicated mushrooms of the same species, Agaricus Bisporus (white button, portabella, crimini), group similarly. The other varieties formed individual, distinct clusters. A total of 1344 (520 annotated) compounds were detected in all seven mushroom varieties. Each variety had tens-to-hundreds of unique-to-mushroom-variety compounds. These ranged from 29 for crimini to 854 for lion's mane. All three Agaricus bisporus varieties had similar amino acid profiles (including detection of all nine essential amino acids), while other varieties had less methionine and tryptophan. Lion's mane and oyster mushrooms had the highest concentrations of L-ergothioneine. The detection of hundreds of unique-to-mushroom-variety compounds emphasizes the differences in chemical composition of these varieties of edible fungi.

7.
Redox Biol ; 64: 102792, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390786

RESUMEN

In the U.S., alcohol-associated liver disease (ALD) impacts millions of people and is a major healthcare burden. While the pathology of ALD is unmistakable, the molecular mechanisms underlying ethanol hepatotoxicity are not fully understood. Hepatic ethanol metabolism is intimately linked with alterations in extracellular and intracellular metabolic processes, specifically oxidation/reduction reactions. The xenobiotic detoxification of ethanol leads to significant disruptions in glycolysis, ß-oxidation, and the TCA cycle, as well as oxidative stress. Perturbation of these regulatory networks impacts the redox status of critical regulatory protein thiols throughout the cell. Integrating these key concepts, our goal was to apply a cutting-edge approach toward understanding mechanisms of ethanol metabolism in disrupting hepatic thiol redox signaling. Utilizing a chronic murine model of ALD, we applied a cysteine targeted click chemistry enrichment coupled with quantitative nano HPLC-MS/MS to assess the thiol redox proteome. Our strategy reveals that ethanol metabolism largely reduces the cysteine proteome, with 593 cysteine residues significantly reduced and 8 significantly oxidized cysteines. Ingenuity Pathway Analysis demonstrates that ethanol metabolism reduces specific cysteines throughout ethanol metabolism (Adh1, Cat, Aldh2), antioxidant pathways (Prx1, Mgst1, Gsr), as well as many other biochemical pathways. Interestingly, a sequence motif analysis of reduced cysteines showed a correlation for hydrophilic, charged amino acids lysine or glutamic acid nearby. Further research is needed to determine how a reduced cysteine proteome impacts individual protein activity across these protein targets and pathways. Additionally, understanding how a complex array of cysteine-targeted post-translational modifications (e.g., S-NO, S-GSH, S-OH) are integrated to regulate redox signaling and control throughout the cell is key to the development of redox-centric therapeutic agents targeted to ameliorate the progression of ALD.


Asunto(s)
Cisteína , Compuestos de Sulfhidrilo , Ratones , Animales , Cisteína/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Química Clic , Oxidación-Reducción , Etanol
8.
J Neurosci ; 43(10): 1845-1857, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36759193

RESUMEN

Mitochondrial dysfunction is an early event in the pathogenesis of neurologic disorders and aging. Sirtuin 3 (SIRT3) regulates mitochondrial function in response to the cellular environment through the reversible deacetylation of proteins involved in metabolism and reactive oxygen species detoxification. As the primary mitochondrial deacetylase, germline, or peripheral tissue-specific deletion of SIRT3 produces mitochondrial hyperacetylation and the accelerated development of age-related diseases. Given the unique metabolic demands of neurons, the role of SIRT3 in the brain is only beginning to emerge. Using mass spectrometry-based acetylomics, high-resolution respirometry, video-EEG, and cognition testing, we report targeted deletion of SIRT3 from select neurons in the cortex and hippocampus produces altered neuronal excitability and metabolic dysfunction in female mice. Targeted deletion of SIRT3 from neuronal helix-loop-helix 1 (NEX)-expressing neurons resulted in mitochondrial hyperacetylation, female-specific superoxide dismutase-2 (SOD2) modification, increased steady-state superoxide levels, metabolic reprogramming, altered neuronal excitability, and working spatial memory deficits. Inducible neuronal deletion of SIRT3 likewise produced female-specific deficits in spatial working memory. Together, the data demonstrate that deletion of SIRT3 from forebrain neurons selectively predisposes female mice to deficits in mitochondrial and cognitive function.SIGNIFICANCE STATEMENT Mitochondrial SIRT3 is an enzyme shown to regulate energy metabolism and antioxidant function, by direct deacetylation of proteins. In this study, we show that neuronal SIRT3 deficiency renders female mice selectively vulnerable to impairment in redox and metabolic function, spatial memory, and neuronal excitability. The observed sex-specific effects on cognition and neuronal excitability in female SIRT3-deficient mice suggest that mitochondrial dysfunction may be one factor underlying comorbid neuronal diseases, such as Alzheimer's disease and epilepsy. Furthermore, the data suggest that SIRT3 dysfunction may predispose females to age-related metabolic and cognitive impairment.


Asunto(s)
Sirtuina 3 , Masculino , Ratones , Femenino , Animales , Sirtuina 3/genética , Neuronas/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/metabolismo , Acetilación
9.
Metabolites ; 11(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919953

RESUMEN

Identifying and annotating the molecular composition of individual foods will improve scientific understanding of how foods impact human health and how much variation exists in the molecular composition of foods of the same species. The complexity of this task includes distinct varieties and variations in natural occurring pigments of foods. Lipidomics, a sub-field of metabolomics, has emerged as an effective tool to help decipher the molecular composition of foods. For this proof-of-principle research, we determined the lipidomic profiles of green, yellow and red bell peppers (Capsicum annuum) using liquid chromatography mass spectrometry and a novel tool for automated annotation of compounds following database searches. Among 23 samples analyzed from 6 peppers (2 green, 1 yellow, and 3 red), over 8000 lipid compounds were detected with 315 compounds (106 annotated) found in all three colors. Assessments of relationships between these compounds and pepper color, using linear mixed effects regression and false discovery rate (<0.05) statistical adjustment, revealed 11 compounds differing by color. The compound most strongly associated with color was the carotenoid, ß-cryptoxanthin (p-value = 7.4 × 10-5; FDR adjusted p-value = 0.0080). These results support lipidomics as a viable analytical technique to identify molecular compounds that can be used for unique characterization of foods.

10.
J Biol Chem ; 296: 100159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277360

RESUMEN

Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.


Asunto(s)
Colesterol/química , Liposomas/química , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas de Transporte Vesicular/química , Animales , Sitios de Unión , Línea Celular Tumoral , Colesterol/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Sci Rep ; 10(1): 1157, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980691

RESUMEN

Although health benefits of the Dietary Approaches to Stop Hypertension (DASH) diet are established, it is not understood which food compounds result in these benefits. We used metabolomics to identify unique compounds from individual foods of a DASH-style diet and determined if these Food-Specific Compounds (FSC) are detectable in urine from participants in a DASH-style dietary study. We also examined relationships between urinary compounds and blood pressure (BP). Nineteen subjects were randomized into 6-week controlled DASH-style diet interventions. Mass spectrometry-based metabolomics was performed on 24-hour urine samples collected before and after each intervention and on 12 representative DASH-style foods. Between 66-969 compounds were catalogued as FSC; for example, 4-hydroxydiphenylamine was found to be unique to apple. Overall, 13-190 of these FSC were detected in urine, demonstrating that these unmetabolized food compounds can be discovered in urine using metabolomics. Although linear mixed effects models showed no FSC from the 12 profiled foods were significantly associated with BP, other endogenous and food-related compounds were associated with BP (N = 16) and changes in BP over time (N = 6). Overall, this proof of principle study demonstrates that metabolomics can be used to catalog FSC, which can be detected in participant urine following a dietary intervention.


Asunto(s)
Enfoques Dietéticos para Detener la Hipertensión , Alimentos , Metaboloma , Compuestos Orgánicos/orina , Biotransformación , Presión Sanguínea , Cromatografía Líquida de Alta Presión , Estudios Cruzados , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/farmacocinética , Femenino , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Nutrientes/farmacocinética , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Urinálisis/métodos
12.
J Mol Cell Cardiol ; 138: 304-317, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31836543

RESUMEN

Succinylation is a post-translational modification of protein lysine residues with succinyl groups derived from succinyl CoA. Succinylation is considered a significant post-translational modification with the potential to impact protein function which is highly conserved across numerous species. The role of succinylation in the heart, especially in heart failure and myofibril mechanics, remains largely unexplored. Mechanical parameters were measured in myofibrils isolated from failing hearts of ischemic cardiomyopathy patients and non-failing donor controls. We employed mass spectrometry to quantify differential protein expression in myofibrils from failing ischemic cardiomyopathy hearts compared to non-failing hearts. In addition, we combined peptide enrichment by immunoprecipitation with liquid chromatography tandem mass spectrometry to quantitatively analyze succinylated lysine residues in these myofibrils. Several key parameters of sarcomeric mechanical interactions were altered in myofibrils isolated from failing ischemic cardiomyopathy hearts, including lower resting tension and a faster rate of activation. Of the 100 differentially expressed proteins, 46 showed increased expression in ischemic heart failure, while 54 demonstrated decreased expression in ischemic heart failure. Our quantitative succinylome analysis identified a total of 572 unique succinylated lysine sites located on 181 proteins, with 307 significantly changed succinylation events. We found that 297 succinyl-Lys demonstrated decreased succinylation on 104 proteins, while 10 residues demonstrated increased succinylation on 4 proteins. Investigating succinyl CoA generation, enzyme activity assays demonstrated that α-ketoglutarate dehydrogenase and succinate dehydrogenase activities were significantly decreased in ischemic heart failure. An activity assay for succinyl CoA synthetase demonstrated a significant increase in ischemic heart failure. Taken together, our findings support the hypothesis that succinyl CoA production is decreased and succinyl CoA turnover is increased in ischemic heart failure, potentially resulting in an overall decrease in the mitochondrial succinyl CoA pool, which may contribute to decreased myofibril protein succinylation in heart failure.


Asunto(s)
Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas Mitocondriales/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Miofibrillas/metabolismo , Ácido Succínico/metabolismo , Acilación , Cardiomiopatías/complicaciones , Humanos , Lisina/metabolismo , Metilación , Persona de Mediana Edad , Isquemia Miocárdica/complicaciones , Proteómica , Reproducibilidad de los Resultados , Donantes de Tejidos
13.
J Proteome Res ; 18(4): 1513-1531, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30644754

RESUMEN

Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation. Mitochondrial fractions were examined by label-free quantitative HPLC-MS/MS to reveal competition between lysine acetylation and succinylation. A class of proteins defined as "differential acyl switching proteins" demonstrate select sensitivity to alcohol-induced protein acylation. A number of these proteins reveal saturated lysine-site occupancy, suggesting a significant level of differential stoichiometry in the setting of ethanol consumption. We hypothesize that ethanol downregulates numerous mitochondrial metabolic pathways through differential acyl switching proteins. Data are available via ProteomeXchange with identifier PXD012089.


Asunto(s)
Acilación/efectos de los fármacos , Etanol/farmacología , Mitocondrias , Proteoma , Animales , Hepatopatías Alcohólicas/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteoma/química , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
14.
Metabolites ; 8(4)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518126

RESUMEN

Background: Metabolomics is emerging as a valuable tool in clinical science. However, one major challenge in clinical metabolomics is the limited use of standardized guidelines for sample collection and handling. In this study, we conducted a pilot analysis of serum and plasma to determine the effects of processing time and collection tube on the metabolome. Methods: Blood was collected in 3 tubes: Vacutainer serum separator tube (SST, serum), EDTA (plasma) and P100 (plasma) and stored at 4 degrees for 0, 0.5, 1, 2, 4 and 24 h prior to centrifugation. Compounds were extracted using liquid-liquid extraction to obtain a hydrophilic and a hydrophobic fraction and analyzed using liquid chromatography mass spectrometry. Differences among the blood collection tubes and sample processing time were evaluated (ANOVA, Bonferroni FWER ≤ 0.05 and ANOVA, Benjamini Hochberg FDR ≤ 0.1, respectively). Results: Among the serum and plasma tubes 93.5% of compounds overlapped, 382 compounds were unique to serum and one compound was unique to plasma. There were 46, 50 and 86 compounds affected by processing time in SST, EDTA and P100 tubes, respectively, including many lipids. In contrast, 496 hydrophilic and 242 hydrophobic compounds differed by collection tube. Forty-five different chemical classes including alcohols, sugars, amino acids and prenol lipids were affected by the choice of blood collection tube. Conclusion: Our results suggest that the choice of blood collection tube has a significant effect on detected metabolites and their overall abundances. Perhaps surprisingly, variation in sample processing time has less of an effect compared to collection tube; however, a larger sample size is needed to confirm this.

15.
Methods Mol Biol ; 1809: 237-262, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29987793

RESUMEN

Proteomics has enabled researchers to evaluate global protein changes in a relatively rapid and comprehensive manner. Applications of these technologies in lung research include biomarker and drug discovery, elucidating disease mechanisms, and quantitative clinical assays. Two common workflows exist for quantitative proteomics studies that are aimed at determining differences in protein levels: label-free and labeling methods. Here we describe specific techniques involved in both quantitative workflows; these include extensive sample preparation methods for several lung-specific sample types. Methods are also included for mass spectrometry-based sample analysis and data analysis. While the focus is on quantitative, clinical proteomics, these strategies are appropriate for a wide array of sample types and applications.


Asunto(s)
Pulmón/metabolismo , Proteoma , Proteómica , Investigación , Biomarcadores , Lavado Broncoalveolar , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Interpretación Estadística de Datos , Humanos , Espectrometría de Masas , Proteómica/métodos , Flujo de Trabajo
16.
Methods Mol Biol ; 1809: 263-288, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29987794

RESUMEN

Advancements in omics technologies have increased our potential to evaluate molecular changes in a rapid and comprehensive manner. This is especially true in mass spectrometry-based metabolomics where improvements, including ease of use, in high-performance liquid chromatography (HPLC), column chemistries, instruments, software, and molecular databases, have advanced the field considerably. Applications of this relatively new omics technology in clinical research include discovering disease biomarkers, finding new drug targets, and elucidating disease mechanisms. Here we describe a typical clinical metabolomics workflow, which includes the following steps: (1) extraction of metabolites from the lung, plasma, bronchoalveolar lavage, or cells; (2) sample analysis via liquid chromatography-mass spectrometry; and (3) data analysis using commercial and freely available software packages. Overall, the methods delineated here can help investigators use metabolomics to discovery novel biomarkers and to understand lung diseases.


Asunto(s)
Pulmón/metabolismo , Metaboloma , Metabolómica , Investigación , Líquido del Lavado Bronquioalveolar , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Interpretación Estadística de Datos , Humanos , Extracción Líquido-Líquido , Metabolómica/métodos , Espectrometría de Masas en Tándem
17.
Sci Data ; 5: 180060, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29664467

RESUMEN

The analysis of bronchoalveolar lavage fluid (BALF) using mass spectrometry-based metabolomics can provide insight into lung diseases, such as asthma. However, the important step of compound identification is hindered by the lack of a small molecule database that is specific for BALF. Here we describe prototypic, small molecule databases derived from human BALF samples (n=117). Human BALF was extracted into lipid and aqueous fractions and analyzed using liquid chromatography mass spectrometry. Following filtering to reduce contaminants and artifacts, the resulting BALF databases (BALF-DBs) contain 11,736 lipid and 658 aqueous compounds. Over 10% of these were found in 100% of samples. Testing the BALF-DBs using nested test sets produced a 99% match rate for lipids and 47% match rate for aqueous molecules. Searching an independent dataset resulted in 45% matching to the lipid BALF-DB compared to<25% when general databases are searched. The BALF-DBs are available for download from MetaboLights. Overall, the BALF-DBs can reduce false positives and improve confidence in compound identification compared to when general databases are used.


Asunto(s)
Líquido del Lavado Bronquioalveolar/química , Bases de Datos de Compuestos Químicos , Metabolómica , Lavado Broncoalveolar , Humanos , Espectrometría de Masas
18.
Rapid Commun Mass Spectrom ; 32(15): 1173-1180, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29659066

RESUMEN

RATIONALE: The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. METHODS: ADAP1 was immunoprecipitated from extracts of HEK293 cells stably transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC/MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data-mining algorithm. Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC/MS2 . Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). RESULTS: Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. CONCLUSIONS: A novel phosphorylation site was identified at tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that tyrosine 364 is phosphorylated by a PKC-dependent mechanism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/análisis , Espectrometría de Masas/métodos , Proteínas del Tejido Nervioso/análisis , Mapeo Peptídico/métodos , Fosfopéptidos/análisis , Tirosina/análisis , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Tripsina/metabolismo , Tirosina/química , Tirosina/metabolismo
19.
Curr Opin Chem Biol ; 42: 60-66, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29161611

RESUMEN

Mass spectrometry-based metabolomics is being increasingly utilized in various research fields including investigating human diseases, nutrition, industrial applications, and plant/natural products studies. Although new analytical approaches have enhanced the performance of metabolomic analyses, significant challenges associated with throughput, metabolome coverage, and compound identification still exist. Ion mobility mass spectrometry offers great potential for improving throughput and depth of coverage in metabolomics experiments. For example, multi-dimensional, structural resolution offered by ion mobility enables improved identification of metabolites and chemical classes. This mini-review discusses the advantages, recent developments and limitations of using ion mobility mass spectrometry as part of a metabolomics workflow.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Lípidos/química , Espectrometría de Masas/métodos , Metabolómica/métodos , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Movilidad Iónica/instrumentación , Espectrometría de Masas/instrumentación , Metabolómica/instrumentación
20.
Anal Chem ; 89(12): 6384-6391, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28528542

RESUMEN

A commercial liquid chromatography/drift tube ion mobility-mass spectrometer (LC/IM-MS) was evaluated for its utility in global metabolomics analysis. Performance was assessed using 12 targeted metabolite standards where the limit of detection (LOD), linear dynamic range, resolving power, and collision cross section (Ω) are reported for each standard. Data were collected in three different instrument operation modes: flow injection analysis with IM-MS (FIA/IM-MS), LC/MS, and LC/IM-MS. Metabolomics analyses of human plasma and HaCaT cells were used to compare the above three operation modes. LC/MS provides linearity in response, data processing automation, improved limits of detection, and ease of use. Advantages of LC/IM-MS and FIA/IM-MS include the ability to develop mobility-mass trend lines for structurally similar biomolecules, increased peak capacity, reduction of chemical/matrix noise, improvement in signal-to-noise, and separations of isobar/isomer compounds that are not resolved by LC. We further tested the feasibility of incorporating IM-MS into conventional LC/MS metabolomics workflows. In general, the addition of ion mobility dimension has increased the separation of compounds in complex biological matrixes and has the potential to largely improve the throughput of metabolomics analysis.


Asunto(s)
Lípidos/sangre , Metabolómica , Línea Celular , Cromatografía Líquida de Alta Presión , Análisis de Inyección de Flujo , Humanos , Espectrometría de Movilidad Iónica , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...