Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(8): 10942-10952, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350021

RESUMEN

Liquid-like surfaces featuring slippery, omniphobic, covalently attached liquids (SOCALs) reduce unwanted adhesion by providing a molecularly smooth and slippery surface arising from the high mobility of the liquid chains. Such SOCALs are commonly prepared on hard substrates, such as glass, wafers, or metal oxides, despite the importance of nonpolar elastomeric substrates, such as polydimethylsiloxane (PDMS) in anti-fouling or nonstick applications. Compared to polar elastomers, hydrophobic PDMS elastomer activation and covalent functionalization are significantly more challenging, as PDMS tends to display fast hydrophobic recovery upon activation as well as superficial cracking. Through the extraction of excess PDMS oligomers and fine-tuning of plasma activation parameters, homogeneously functionalized PDMS with fluorinated polysiloxane brushes could be obtained while at the same time reducing crack formation. Polymer brush mobility was increased through the addition of a smaller molecular silane linker to exhibit enhanced dewetting properties and reduced substrate swelling compared to functionalizations featuring hydrocarbon functionalities. Linear polymer brushes were verified by thermogravimetric analysis. The optical properties of PDMS remained unaffected by the activation in high-frequency plasma but were impacted by low-frequency plasma. Drastic decreases in solid adhesion of not just complex contaminants but even ice could be shown in horizontal push tests, demonstrating the potential of SOCAL-functionalized PDMS surfaces for improved nonstick applications.

2.
Nat Mater ; 23(2): 262-270, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123813

RESUMEN

Porous metal-organic frameworks have emerged to resolve important challenges of our modern society, such as CO2 sequestration. Zeolitic imidazolate frameworks (ZIFs) can undergo a glass transition to form ZIF glasses; they combine the liquid handling of classical glasses with the tremendous potential for gas separation applications of ZIFs. Using millimetre-sized ZIF-62 single crystals and centimetre-sized ZIF-62 glass, we demonstrate the scalability and processability of our materials. Further, following the evolution of gas penetration into ZIF crystals and ZIF glasses by infrared microimaging techniques, we determine the diffusion coefficients and changes to the pore architecture on the ångström scale. The evolution of the material on melting and processing is observed in situ on different length scales by using a microscope-coupled heating stage and analysed microstructurally by transmission electron microscopy. Pore collapse during glass processing is further tracked by changes in the volume and density of the glasses. Mass spectrometry was utilized to investigate the crystal-to-glass transition and thermal-processing ability. The controllable tuning of the pore diameter in ZIF glass may enable liquid-processable ZIF glass membranes for challenging gas separations.

3.
Chem Commun (Camb) ; 59(64): 9738-9741, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37477599

RESUMEN

The bottom-up synthesis of plasmonic NHC@CuNPs from common starting reagents, via the formation of the synthetically accessible NHC-Cu(I)-Br complex and its reduction by NH3·BH3 is reported. The resulting NHC@CuNPs have been characterized in detail by XPS, TEM and NMR spectroscopy. The stability of NHC@CuNPs was investigated under both inert and ambient conditions using UV-Vis analysis. While the NHC@CuNPs are stable under inert conditions for an extended period of time, the NPs oxidize under air to form CuxO with concomitant release of the stabilizing NHC ligand.

4.
Carbohydr Polym ; 315: 120984, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230621

RESUMEN

A novel hydroxypropyl cellulose (gHPC) hydrogel with graded porosity has been fabricated, in which pore size, shape, and mechanical properties vary across the material. The graded porosity was achieved by cross-linking different parts of the hydrogel at temperatures below and above 42 °C, which was found to be the temperature of turbidity onset (lower critical solution temperature, LCST) for the HPC and divinylsulfone cross-linker mixture. Scanning electron microscopy imaging revealed a decreasing pore size along the cross-section of the HPC hydrogel from the top to the bottom layer. HPC hydrogels demonstrate graded mechanical properties whereby the top layer, Zone 1, cross-linked below LCST, can be compressed by about 50% before fracture, whereas the middle and bottom layers (Zone 2 and 3, respectively) cross-linked at 42 °C, can withstand 80% compression before failure. This work demonstrates a straightforward, yet novel, concept of exploiting a graded stimulus to incorporate a graded functionality into porous materials that can withstand mechanical stress and minor elastic deformations.

5.
Nanoscale Adv ; 5(4): 1095-1101, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36798502

RESUMEN

Highly active and selective heterogeneous catalysis driven by metallic nanoparticles relies on a high degree of stabilization of such nanomaterials facilitated by strong surface ligands or deposition on solid supports. In order to tackle these challenges, N-heterocyclic carbene stabilized gold nanoparticles (NHC@AuNPs) emerged as promising heterogeneous catalysts. Despite the high degree of stabilization obtained by NHCs as surface ligands, NHC@AuNPs still need to be loaded on support structures to obtain easily recyclable and reliable heterogeneous catalysts. Therefore, the combination of properties obtained by NHCs and support structures as NHC bearing "functional supports" for the stabilization of AuNPs is desirable. Here, we report the synthesis of hyper-crosslinked polymers containing benzimidazolium as NHC precursors to stabilize AuNPs. Following the successful synthesis of hyper-crosslinked polymers (HCP), a two-step procedure was developed to obtain HCP·NHC@AuNPs. Detailed characterization not only revealed the successful NHC formation but also proved that the NHC functions as a stabilizer to the AuNPs in the porous polymer network. Finally, HCP·NHC@AuNPs were evaluated in the catalytic decomposition of 4-nitrophenol. In batch reactions, a conversion of greater than 99% could be achieved in as little as 90 s. To further evaluate the catalytic capability of HCP·NHC@AuNP, the catalytic decomposition of 4-nitrophenol was also performed in a flow setup. Here the catalyst not only showed excellent catalytic conversion but also exceptional recyclability while maintaining the catalytic performance.

6.
Chem Commun (Camb) ; 58(87): 12200-12203, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239130

RESUMEN

We have created sequenced phosphoester-linked trimers of aromatic donor/acceptors which participate in charge-transfer interactions. Each sequence displays characteristic self-assembly, and complementary sequences interact with each other to produce new nanostructures and thermochromism. This paves the way towards new functional nanomaterials which make bio-analogous use of sequence to tune structure.


Asunto(s)
Nanoestructuras , Nanoestructuras/química
7.
Biomedicines ; 10(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740438

RESUMEN

Since their first discovery, N-heterocyclic carbenes have had a significant impact on organometallic chemistry. Due to their nature as strong σ-donor and π-acceptor ligands, they are exceptionally well suited to stabilize Au(I) and Au(III) complexes in biological environments. Over the last decade, the development of rationally designed NHCAu(I/III) complexes to specifically target DNA has led to a new "gold rush" in bioinorganic chemistry. This review aims to summarize the latest advances of NHCAu(I/III) complexes that are able to interact with DNA. Furthermore, the latest advancements on acyclic diamino carbene gold complexes with anticancer activity are presented as these typically overlooked NHC alternatives offer great additional design possibilities in the toolbox of carbene-stabilized gold complexes for targeted therapy.

8.
J Appl Crystallogr ; 55(Pt 3): 647-655, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35719299

RESUMEN

Electron diffraction enables structure determination of organic small molecules using crystals that are too small for conventional X-ray crystallography. However, because of uncertainties in the experimental parameters, notably the detector distance, the unit-cell parameters and the geometry of the structural models are typically less accurate and precise compared with results obtained by X-ray diffraction. Here, an iterative procedure to optimize the unit-cell parameters obtained from electron diffraction using idealized restraints is proposed. The cell optimization routine has been implemented as part of the structure refinement, and a gradual improvement in lattice parameters and data quality is demonstrated. It is shown that cell optimization, optionally combined with geometrical corrections for any apparent detector distortions, benefits refinement of electron diffraction data in small-molecule crystallography and leads to more accurate structural models.

9.
Inorg Chem ; 61(19): 7448-7458, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35506716

RESUMEN

Acyclic diamino carbenes (ADCs) are interesting alternatives to their more widely studied N-heterocyclic carbene counterparts, particularly due to their greater synthetic accessibility and properties such as increased sigma donation and structural flexibility. ADC gold complexes are typically obtained through the reaction of equimolar amounts of primary/secondary amines on gold-coordinated isocyanide ligands. As such, the reaction of diamine nucleophiles to isocyanide gold complexes was expected to lead to bis-ADC gold compounds with potential applications in catalysis or as novel precursors for gold nanomaterials. However, the reaction of primary diamines with two equivalents of isocyanide gold chlorides resulted in only one of the amine groups reacting with the isocyanide carbon. The resulting ADC gold complexes bearing free amines dimerized via coordination of the amine to the partner gold atom, resulting in cyclic, dimeric gold complexes. In contrast, when secondary diamines were used, both amines reacted with an isocyanide carbon, leading to the expected bis-ADC gold complexes. Density functional theory calculations were performed to elucidate the differences in the reactivities between primary and secondary diamines. It was found that the primary amines were associated with higher reaction barriers than the secondary amines and hence slower reaction rates, with the formation of the second carbenes in the bis-ADC compounds being inhibitingly slow. It was also found that diamines have a unique reactivity due to the second amine serving as an internal proton shuttle.

10.
Chem Sci ; 14(1): 196-202, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36605750

RESUMEN

DNA-peptide conjugates offer an opportunity to marry the benefits of both biomolecular classes, combining the high level of programmability found with DNA, with the chemical diversity of peptides. These hybrid systems offer potential in fields such as therapeutics, nanotechnology, and robotics. Using the first DNA-ß-turn peptide conjugate, we present three studies investigating the self-assembly of DNA-peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA-peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA-peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures.

11.
J Colloid Interface Sci ; 610: 1027-1034, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34920862

RESUMEN

Most MOFs are non-cubic, with functionality dependent upon crystallographic direction, and are largely prepared as microcrystalline powders. Therefore, general methods to orient and assemble free-standing MOF crystals are especially important and urgently needed. This is addressed here through the novel strategy of E-field assisted liquid crystal assembly, applied to MIL-53-NH2(Al), MIL-68(In) and NU-1000 MOF crystals, with aspect ratios ranging from 10 to 1.2, to form highly oriented MOF superstructures which were photopolymerized to fix their long-ranged order. This new strategy for controlling MOF orientation and packing side-steps the traditional requirements of particle monodispersity, shape homogeneity and high aspect ratios (>4.7) typical of colloidal and liquid crystal assembly, and is applicable even to polydispersed MOF crystals, thereby paving the way towards the development of highly oriented MOF composites with improved functionality.

12.
Angew Chem Int Ed Engl ; 60(42): 22700-22705, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34520085

RESUMEN

Self-assembly processes guide disordered molecules or particles into long-range organized structures due to specific supramolecular interactions among the building entities. Herein, we report a unique evaporation-induced self-assembly (EISA) strategy for four different silica nanoparticle systems obtained through peptide functionalization of the particle surface. First, covalent peptide-silica coupling was investigated in detail, starting with the grafting of a single amino acid (L-serine) and expanded to specific small peptides (up to four amino acids) and transferred to different particle types (MCM-48-type MSNs, solid nanoparticles, and newly developed virus-like nanoparticles). These materials were investigated regarding their ability to undergo EISA, which was shown to be independent of particle type and amount of peptide anchored to their surface. This EISA-based approach provides new possibilities for the design of future advanced drug delivery systems, engineered hierarchical sorbents, and nanocatalyst assemblies.

13.
Chem Asian J ; 16(20): 3026-3037, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34399027

RESUMEN

Solid supported or ligand capped gold nanomaterials (AuNMs) emerged as versatile and recyclable heterogeneous catalysts for a broad variety of conversions in the ongoing catalytic 'gold rush'. Existing at the border of homogeneous and heterogeneous catalysis, AuNMs offer the potential to merge high catalytic activity with significant substrate selectivity. Owing to their strong binding towards the surface atoms of AuMNs, NHCs offer tunable activation of surface atoms while maintaining selectivity and stability of the NM even under challenging conditions. This work summarizes well-defined catalytically active NHC capped AuNMs including spherical nanoparticles and atom-precise nanoclusters as well as the important NHC design choices towards activity and (stereo-)selectivity enhancements.

14.
Anal Biochem ; 611: 114003, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159847

RESUMEN

Most of potential diagnostic and therapeutic nanoparticles fail to reach clinical trials because assessment of their 'drug-like' properties is often overlooked during the discovery stage. This compromises the results of cell culture and animal experiments, making them insufficient to evaluate the lead candidates for testing on patients. In this study, we demonstrate the potential of high-resolution inductively coupled plasma mass spectrometry (ICP-MS) as a nanoparticle qualification tool. Using novel gold nanoparticles stabilized by N-heterocyclic carbenes as test nanoparticles, it was shown that important prerequisites for biomedical applications, such as resistance to the action of human serum milieu or reactivity toward serum biomolecules, can be reliably assessed by recording the signals of gold or sulfur isotopes. Implemented during the screening stage, the method would provide benefits in shortening timelines and reducing cost for selection and initial testing of medicinal nanoparticle candidates.


Asunto(s)
Oro/análisis , Espectrometría de Masas , Nanopartículas del Metal/análisis , Tamaño de la Partícula
15.
Chemistry ; 26(68): 15859-15862, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32996636

RESUMEN

N-heterocyclic carbenes (NHCs) have received significant attention as gold nanoparticle stabilizers due to their strong binding affinity towards gold. However, their tunability is limited by the difficulty in obtaining nonsymmetric NHCs. In this regard, N-acyclic carbenes (NACs) are attractive alternatives due to their high synthetic versatility, allowing easy tuning of their steric and electronic properties towards specific applications. This work reports the first series of stable and monodisperse NAC-functionalized gold nanoparticles. These particles with sizes ranging 3.8 to 11.6 nm were characterized using NMR, UV/Vis and TEM. The nanoparticles display good stability at elevated temperatures and for extended periods both dried or dispersed in a medium, as well as in the presence of exogenous thiols. Importantly, these NAC-stabilized gold nanoparticles offer a promising and versatile alternative to NHC-stabilized gold nanoparticles.

16.
J Inorg Biochem ; 199: 110707, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31369908

RESUMEN

N-Heterocyclic carbene-stabilized metal nanoparticles have drawn much attention over the last decade due their strong carbon metal bond. Although several reports show increased stability of such N-heterocyclic carbene-stabilized metal nanoparticles, only limited examples of water-soluble N-heterocyclic carbene stabilized metal nanoparticles are known to date. However, water dispersibility and stability in biologically relevant solvents would be a prerequisite for any biological applications. Drawing from the natural amino acid chiral pool, L-histidine was utilized for preparing chiral NHC ligands in the synthesis of water soluble NHC-stabilized gold nanoparticles. For this purpose, N-acetyl-L-histidine ethyl ester was converted into its imidazolium salt either using methyl iodide or 2-iodopropane as alkylation agent. Subsequent reaction of the imidazolium salt with [Au(SMe2)Cl] yielded the corresponding organometallic gold chloride complex. Histidine-2-ylidene stabilized gold nanoparticles were first generated in organic solvents; the histidine derived capping ligand bore ethyl ester moieties which were saponified, affording water soluble pH-responsive NHC-stabilized gold nanoparticles. These gold nanoparticles show remarkable stability in aqueous solutions, with gold nanoparticle solutions remaining stable after months of storage.


Asunto(s)
Oro/química , Histidina/química , Imidazoles/química , Nanopartículas del Metal/química , Concentración de Iones de Hidrógeno
17.
J Am Chem Soc ; 141(33): 12989-12993, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31381859

RESUMEN

Alignment of metal-organic framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that bromobenzene-suspended microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields, giving rise to rapid electrooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

18.
Nanoscale ; 11(17): 8327-8333, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30984947

RESUMEN

Although N-heterocyclic carbenes (NHCs) have been demonstrated as suitable ligands for the stabilisation of gold nanoparticles (AuNPs) through a variety of methods, the manner in which such AuNPs form is yet to be fully elucidated. We report a simple and fast one-step synthesis of uniform chiral (l/d)-histidin-2-ylidene stabilised gold nanoparticles using the organometallic Au(i) complex as a well defined starting material. The resulting nanoparticles have an average size of 2.35 ± 0.43 nm for the L analog whereas an average size of 2.25 ± 0.39 nm was found for the D analog. X-ray photoelectron spectroscopy analyses reveal the presence of Au(i) and Au(0) in all NHC stabilised AuNPs. In contrast, measured X-ray photoelectron spectra of dodecanethiol protected gold nanoparticles showed only the presence of a Au(0) species. This observation leads us to postulate that AuNPs synthesised from organometallic NHC-Au(i) complexes exhibit a monolayer of Au(i) surrounding a Au(0) core. This work highlights the importance of synthetic method choice for NHC-stabilized AuNPs, as this could determine Au oxidation states and resulting AuNP properties such as catalytic activities and stabilities.

19.
Chem Commun (Camb) ; 55(15): 2190-2193, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30702096

RESUMEN

Metal-organic frameworks (MOFs) hold significant potential for use in gas storage, sensing and catalysis. To uncover this potential, MOF processing must develop in line with MOF materials. Here, direct ink writing-based 3D printing of UiO-66 MOF composites and their thermal treatment give mechanically stable yet highly porous composites effective for the catalytic breakdown of methyl-paraoxon, a simulant of highly toxic organophosphate nerve agents.

20.
Sci Rep ; 9(1): 388, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30675014

RESUMEN

We demonstrate for the first time the direct stereolithographic 3D printing of an extrinsically self-healing composite, comprised of commercial photocurable resin modified with anisole and PMMA-filled microcapsules. The composites demonstrate solvent-welding based autonomous self-healing to afford 87% recovery of the initial critical toughness. This work illustrates the potential of stereolithographic printing to fabricate self-healing composites with user-defined structures, avoiding the need for extensive rheological optimization of printing inks, like in direct-write 3D printing. Importantly, this work also demonstrates the inclusion of microcapsules into 3D printing resins to incorporate additional functionality into printed composites, which could be adapted for applications beyond self-healing materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA