Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 1(8): e214, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34387945

RESUMEN

Immunofluorescence labeling and microscopy offer a highly specific means to visualize proteins or other molecular species in a sample by labeling target antigens with fluorescent probes. These fluorescent probes can then be visualized using a fluorescence microscope, allowing their relative spatial relationships to be determined. Due to spectral overlap of common fluorophores, however, it can be challenging to analyze more than three antigens in a single sample with standard imaging approaches. This article describes multiplexed labeling and imaging of four target antigens through the use of a long-Stokes-shift fluorophore-a fluorophore with an unusually large gap between its excitation and emission maxima-in tandem with three conventional fluorophores. This combination allows for multiplexed imaging of four antigens in a single sample with excellent spectral discrimination suitable for sensitive analyses using standard imaging hardware. Particular advantages of this approach are its flexibility in terms of target antigens and the lack of any specialized procedures, reagents, or equipment beyond the commercially available labeling reagent coupled to the long-Stokes-shift fluorophore. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Four-probe immunofluorescence labeling Basic Protocol 2: Four-probe immunofluorescence imaging.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Ionóforos , Microscopía Fluorescente
2.
Cell Rep ; 36(3): 109399, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289347

RESUMEN

The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology. Conditional expression of a single disease-associated mutation, VCP-R155C, in a VCP null background similarly recapitulates features of VCP inactivation and FTLD-TDP, suggesting that this MSP mutation is hypomorphic. Comparison of transcriptomic and proteomic datasets from genetically defined patients with FTLD-TDP reveal that progranulin deficiency and VCP insufficiency result in similar profiles. These data identify a loss of VCP-dependent functions as a mediator of FTLD-TDP and reveal an unexpected biochemical similarity with progranulin deficiency.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/patología , Neuronas/metabolismo , Proteína que Contiene Valosina/metabolismo , Anciano , Alelos , Animales , Atrofia , Autofagosomas/metabolismo , Conducta Animal , Encéfalo/patología , Degeneración Lobar Frontotemporal/genética , Gliosis/patología , Humanos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/patología , Proteómica , Transcriptoma/genética
3.
STAR Protoc ; 2(1): 100268, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490984

RESUMEN

Synapses are crucial to brain function and frequent disease targets, but current analysis methods cannot report on individual synaptic components in situ or present barriers to widespread adoption. SEQUIN was developed to address this challenge. SEQUIN utilizes a widely available super-resolution platform in tandem with image processing and analysis to quantify synaptic loci over large regions of brain and characterize their molecular and nanostructural properties at the individual and population level. This protocol describes quantification of synaptic loci using SEQUIN. For additional details on the use and execution of this protocol, please refer to Sauerbeck et al. (2020).


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador , Sinapsis/metabolismo , Animales , Ratones
4.
Neuron ; 107(2): 257-273.e5, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32392471

RESUMEN

The brain's complex microconnectivity underlies its computational abilities and vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due to the small size and dense packing of its elements. Here, we describe a rapid, accessible super-resolution imaging and analysis workflow-SEQUIN-that quantifies central synapses in human tissue and animal models, characterizes their nanostructural and molecular features, and enables volumetric imaging of mesoscale synaptic networks without the production of large histological arrays. Using SEQUIN, we identify cortical synapse loss resulting from diffuse traumatic brain injury, a highly prevalent connectional disorder. Similar synapse loss is observed in three murine models of Alzheimer-related neurodegeneration, where SEQUIN mesoscale mapping identifies regional synaptic vulnerability. These results establish an easily implemented and robust nano-to-mesoscale synapse quantification and characterization method. They furthermore identify a shared mechanism-synaptopathy-between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Sistema Nervioso Central/diagnóstico por imagen , Nanoestructuras/ultraestructura , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/ultraestructura , Neuroimagen/métodos , Sinapsis/ultraestructura , Animales , Mapeo Encefálico , Sistema Nervioso Central/ultraestructura , Corteza Cerebral/patología , Humanos , Mamíferos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...