Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Commun ; 4(3): 100497, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36435969

RESUMEN

Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.


Asunto(s)
Pistacia , Pistacia/genética , Árboles/genética , Nueces , Domesticación , Cromosomas Sexuales/genética
2.
J Hered ; 108(2): 217-222, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173078

RESUMEN

Two new centromeric satellite DNAs in flatfish (Order Pleuronectiformes) have been characterized. The SacI-family from Hippoglossus hippoglossus, restricted to this species, had a monomeric size of 334 base pair (bp) and was located in most of the centromeres of its karyotype. The PvuII-family, with a monomeric size of 177 bp, was initially isolated from the genome of Solea senegalensis, and fluorescent in situ hybridization (FISH) localized the repeat to centromeres of most of the chromosomes. This family could only be amplified in 2 other species of the genus Solea (Solea solea and Solea lascaris). Molecular features and chromosomal location indicated a possible structural and/or functional role of these sequence repeats. The presence of species-specific satellite-DNA families in the centromeres and their possible role in the speciation processes in this group of fishes is discussed.


Asunto(s)
Centrómero/genética , ADN Satélite/genética , Peces Planos/clasificación , Especiación Genética , Animales , Secuencia de Consenso , Hibridación Fluorescente in Situ , Cariotipificación , Especificidad de la Especie
3.
Genome ; 49(2): 114-21, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16498461

RESUMEN

Rumex acetosa is characterized by a multiple chromosome system (2n = 12 + XX for females, and 2n = 12 + XY1Y2 for males), in which sex is determined by the ratio between the number of X chromosomes and autosome sets. For a better understanding of the molecular structure and evolution of plant sex chromosomes, we have generated a sex chromosome specific library of R. acetosa by microdissection. The screening of this library has allowed us to identify 5 repetitive DNA families that have been characterized in detail. One of these families, DOP-20, has shown no homology with other sequences in databases. Nevertheless, the putative proteins encoded by the other 4 families, DOP-8, DOP-47, DOP-60, and DOP-61, show homology with proteins from different plant retroelements, including poly proteins from Ty3-gypsy- and Ty1-copia-like long terminal repeat (LTR) retroelements, and reverse transcriptase from non-LTR retro elements. Results indicate that sequences from these 5 families are dispersed throughout the genome of both males and females, but no appreciable accumulation or differentiation of these types of sequences have been found in the Y chromosomes. These repetitive DNA sequences are more conserved in the genome of other dioecious species such as Rumex papillaris, Rumex intermedius, Rumex thyrsoides, Rumex hastatulus, and Rumex suffruticosus, than in the polygamous, gynodioecious, or hermaphrodite species Rumex induratus, Rumex lunaria, Rumex con glom er atus, Rumex crispus, and Rumex bucephalo phorus, which supports a single origin of dioecious species in this genus. The implication of these transposable elements in the origin and evolution of the heteromorphic sex chromosomes of R. acetosa is discussed.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos/genética , Rumex/genética , Secuencia de Aminoácidos , Cromosomas de las Plantas , Clonación Molecular , Cruzamientos Genéticos , ADN de Plantas/química , Biblioteca de Genes , Genes de Plantas , Genoma de Planta , Datos de Secuencia Molecular , Retroelementos , Homología de Secuencia de Aminoácido , Cromosomas Sexuales
4.
J Mol Evol ; 60(3): 391-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15871049

RESUMEN

One characteristic of sex chromosomes is the accumulation of a set of different types of repetitive DNA sequences in the Y chromosomes. However, little is known about how this occurs or about how the absence of recombination affects the subsequent evolutionary fate of the repetitive sequences in the Y chromosome. Here we compare the evolutionary pathways leading to the appearance of three different families of satellite-DNA sequences within the genomes of Rumex acetosa and R. papillaris, two dioecious plant species with a complex XX/XY(1)Y(2) sex-chromosome system. We have found that two of these families, one autosomic (the RAE730 family) and one Y-linked (the RAYSI family), arose independently from the ancestral duplication of the same 120-bp repeat unit. Conversely, a comparative analysis of the three satellite-DNA families reveals no evolutionary relationships between these two and the third, RAE180, also located in the Y chromosomes. However, we have demonstrated that, regardless of the mechanisms that gave rise to these families, satellite-DNA sequences have different evolutionary fates according to their location in different types of chromosomes. Specifically, those in the Y chromosomes have evolved at half the rate of those in the autosomes, our results supporting the hypothesis that satellite DNAs in nonrecombining Y chromosomes undergo lower rates of sequence evolution and homogenization than do satellite DNAs in autosomes.


Asunto(s)
Cromosomas de las Plantas/genética , ADN Satélite/genética , Evolución Molecular , Filogenia , Rumex/genética , Cromosoma Y/genética , Secuencia de Bases , Southern Blotting , Clonación Molecular , Análisis por Conglomerados , Cartilla de ADN , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , España
5.
Genome ; 48(1): 18-28, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15729393

RESUMEN

Ribosomal DNA in sturgeon is informative when analyzed at the molecular level because it bears unique characteristics that are, to a certain extent, ancestral within vertebrates. In this paper, we examine the structure and the molecular evolution of the 5S ribosomal DNA (rDNA) region in 13 sturgeon species, comparing both the 5S ribosomal RNA (rRNA) genes and the non-transcribed spacer (NTS) sequences between the coding regions. We have found that different NTS and 5S gene variants are intermixed in the 5S rDNA arrays of the different sturgeon species and that all variants are ancestral, having been maintained over many millions of years. Using predictive models, we have found similar levels of sequence diversity in the coding regions, as well as in the non-coding region, but fixed interspecific differences are underrepresented for 5S genes. However, contrary to the expectations, we have not found fixed differences between NTS sequences when comparing many pairs of species. Specifically, when they belong to the same phylogeographic clade of the four into which the sturgeon is divided, but fixation of mutations and divergence is found between species belonging to different phylogeographic clades. Our results suggest that the evolution of the two parts of the 5S rDNA region cannot be explained exclusively as the outcome of a balance between mutational, homogenizing (i.e., gene conversion as a predominant force in sturgeon), and selective forces. Rather, they suggest that other factors (i.e., hybridization) might be superimposed over those forces and thus could to some extent be masking their effects.


Asunto(s)
ADN Ribosómico/genética , Evolución Molecular , Peces/clasificación , Peces/genética , Filogenia , ARN Ribosómico 5S/genética , Animales , Secuencia de Bases , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA