RESUMEN
CAR T-cell therapy has transformed the care of lymphoma, yet many patients relapse. Several prognostic markers have been associated with CAR T cell outcomes, such as tumor burden, response to bridging chemotherapy, and laboratory parameters at the time of lymphodepletion or infusion. The effect of cancer cachexia and weight loss prior to CAR T cells on toxicity and outcomes is not well understood. Here, we present a retrospective single institution cohort study of 259 patients with lymphoma treated with CAR T-cells between 2017 and 2023. We observed that patients with a >5% decrease in their body mass index (BMI) in the 3 months preceding CAR T treatment (weight loss group; all meeting one of the commonly accepted definitions of cancer cachexia) had higher disease burden and inflammatory parameters (CRP, ferritin, IL6, TNFa) at time of lymphodepletion and CAR T-cell infusion. Patients with weight loss experienced higher rates of grade 3+ neurotoxicity and early hematotoxicity but those effects were not seen upon multivariable adjustment. However, in both univariate and multivariable analysis, patients with weight loss had worse response rates, overall survival, and event-free survival, indicating that weight loss is an independent poor prognostic factor. Our data suggest that weight loss in the 3 months preceding CAR T-cell therapy represents a worrisome "alarm signal" and potentially modifiable factor alongside tumor burden and inflammation and warrants further investigation in patients treated with CAR T therapy.
RESUMEN
Chimeric antigen receptor (CAR) T-cell therapy fails to achieve durable responses in over 60% of relapsed/refractory (R/R) large B-cell lymphoma (LBCL) patients in the third or later line setting. After CAR-T failure, survival outcomes are heterogeneous and a prognostic model in this patient population is lacking. A training cohort of 216 patients with progressive disease (PD) after CAR-T from 12 Spanish centers was used to develop the Post-CAR Prognostic Index (PC-PI); primary endpoint was overall survival (OS) from CAR-T progression. Validation was performed in an external cohort from three different European centers (n = 204). The prognostic score incorporated five variables, assessed at time of PD to CAR-T: ECOG (> 0), hemoglobin (< 10 g/dL), LDH (≥ 2xULN), number of extranodal sites (> 1) and time from CAR-T to PD (< 4 months). Patients were classified in four risk groups with distinct OS (p-value < 0.05 in all comparisons). In the validation cohort, median OS in the low (31%), intermediate-low (26%), intermediate-high (17%) and high risk (26%) were 15.7, 7.1, 1.8 and 1.0 months, respectively (p < 0.05 in all comparisons). Results were consistent following adjustment for subsequent treatment. In the external cohort, the PC-PI showed a C-statistic of 0.79 (95%CI 0.76-0.82), outperforming IPI and R-IPI. In conclusion, the PC-PI score is a novel tool for OS prediction and could facilitate risk-adapted management of LBCL patients relapsing after CAR T-cells. Additionally, these results will help stratification and interpretation of trials and real-world data incorporating CART-exposed patients.
Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Masculino , Femenino , Persona de Mediana Edad , Linfoma de Células B Grandes Difuso/terapia , Inmunoterapia Adoptiva/métodos , Pronóstico , Anciano , Adulto , Progresión de la Enfermedad , Adulto Joven , Estudios de CohortesRESUMEN
PURPOSE: Chimeric antigen receptor (CAR) T-cell therapy is a potent immunotherapy for hematologic malignancies, but patients can develop long-term adverse events, including second primary malignancies (SPM) that impact morbidity and mortality. To delineate the frequency and subtypes of SPMs following CAR-T in lymphoma and myeloma, we performed a systematic review and meta-analysis. EXPERIMENTAL DESIGN: A literature search was conducted in the MEDLINE, Embase, and Cochrane CENTRAL databases. Following the extraction of SPM cases and assignment of malignant origin, we analyzed SPM point estimates using random effects models. RESULTS: We identified 326 SPMs across 5,517 patients from 18 clinical trials and 7 real-world studies. With a median follow-up of 21.7 months, the overall SPM point estimate was 6.0% (95% confidence interval, 4.8%-7.4%). SPM estimates were associated with treatment setting (clinical trials > real-world studies), duration of follow-up, and number of prior treatment lines, which were each confirmed as independent study-level risk factors of SPM in a meta-regression model. A subgroup meta-analysis of the four trials that randomized CAR-T versus standard-of-care revealed a similar risk of SPM with either treatment strategy (P = 0.92). In a distribution analysis of SPM subtypes, hematologic malignancies were the most common entity (37%), followed by solid tumors (27%) and non-melanoma skin cancers (16%). T-cell malignancies represented a small minority of events (1.5%). We noted disease- and product-specific variations in SPM distribution. CONCLUSIONS: These data raise awareness of SPM as a clinically relevant long-term adverse event in patients receiving CAR T-cell therapy. However, our findings do not indicate that SPM frequency is higher with CAR-T versus previous standard-of-care strategies.
Asunto(s)
Inmunoterapia Adoptiva , Linfoma , Mieloma Múltiple , Neoplasias Primarias Secundarias , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma/inmunología , Linfoma/terapia , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Neoplasias Primarias Secundarias/epidemiología , Neoplasias Primarias Secundarias/etiología , Receptores Quiméricos de Antígenos/inmunologíaRESUMEN
Autologous anti-CD19 chimeric antigen receptor (CAR) T cells are now used in routine practice for relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Severe (grade ≥ 3) cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) are still the most concerning acute toxicities leading to frequent intensive care unit (ICU) admission, prolonging hospitalization, and adding significant cost to treatment. We report on the incidence of CRS and ICANS and the outcomes in a large cohort of 925 patients with LBCL treated with axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) in France based on patient data captured through the DESCAR-T registry. CRS of any grade occurred in 778 patients (84.1%), with 74 patients (8.0%) with grade 3 CRS or higher, while ICANS of any grade occurred in 375 patients (40.5%), with 112 patients (12.1%) with grade ≥ 3 ICANS. Based on the parameters selected by multivariable analyses, two independent prognostic scoring systems (PSS) were derived, one for grade ≥ 3 CRS and one for grade ≥ 3 ICANS. CRS-PSS included bulky disease, a platelet count < 150 G/L, a C-reactive protein (CRP) level > 30 mg/L and no bridging therapy or stable or progressive disease (SD/PD) after bridging. Patients with a CRS-PSS score > 2 had significantly higher risk to develop grade ≥ 3 CRS. ICANS-PSS included female sex, low level of platelets (< 150 G/L), use of axi-cel and no bridging therapy or SD/PD after bridging. Patients with a CRS-PSS score > 2 had significantly higher risk to develop grade ≥ 3 ICANS. Both scores were externally validated in international cohorts of patients treated with tisa-cel or axi-cel.
Asunto(s)
Antígenos CD19 , Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Masculino , Femenino , Persona de Mediana Edad , Antígenos CD19/inmunología , Pronóstico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/inmunología , Síndrome de Liberación de Citoquinas/etiología , Anciano , Adulto , Síndromes de Neurotoxicidad/etiología , Productos Biológicos/uso terapéutico , Productos Biológicos/efectos adversos , Francia , Anciano de 80 o más Años , Receptores de Antígenos de Linfocitos TRESUMEN
Although chimeric antigen receptor (CAR) T cell therapy represents a transformative immunotherapy, it is also associated with distinct toxicities that contribute to morbidity and mortality. In this systematic review and meta-analysis, we searched MEDLINE, Embase and CINAHL (Cochrane) for reports of nonrelapse mortality (NRM) after CAR T cell therapy in lymphoma and multiple myeloma up to March 2024. After extraction of causes and numbers of death, we analyzed NRM point estimates using random-effect models. We identified 7,604 patients across 18 clinical trials and 28 real-world studies. NRM point estimates varied across disease entities and were highest in patients with mantle-cell lymphoma (10.6%), followed by multiple myeloma (8.0%), large B cell lymphoma (6.1%) and indolent lymphoma (5.7%). Entity-specific meta-regression models for large B cell lymphoma and multiple myeloma revealed that axicabtagene ciloleucel and ciltacabtagene autoleucel were independently associated with increased NRM point estimates, respectively. Of 574 reported nonrelapse deaths, over half were attributed to infections (50.9%), followed by other malignancies (7.8%) and cardiovascular/respiratory events (7.3%). Conversely, the CAR T cell-specific side effects, immune effector cell-associated neurotoxicity syndrome/neurotoxicity, cytokine release syndrome and hemophagocytic lymphohistiocytosis, represented only a minority of nonrelapse deaths (cumulatively 11.5%). Our findings underline the critical importance of infectious complications after CAR T cell therapy and support the comprehensive reporting of NRM, including specific causes and long-term outcomes.
Asunto(s)
Inmunoterapia Adoptiva , Linfoma , Mieloma Múltiple , Humanos , Productos Biológicos/administración & dosificación , Productos Biológicos/efectos adversos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma/terapia , Linfoma/inmunología , Linfoma/mortalidad , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/mortalidad , Receptores Quiméricos de Antígenos/inmunologíaRESUMEN
Chimeric antigen receptor (CAR) T cells are an established treatment for B cell non-Hodgkin lymphomas (B-NHL). With the remarkable success in improving survival, understanding the late effects of CAR T cell therapy is becoming more relevant. The aim of this study is to determine the incidence of subsequent malignancies in adult patients with B-NHL. We retrospectively studied 355 patients from 2 different medical centers treated with four different CAR T cell products from 2016 to 2022. The overall cumulative incidence for subsequent malignancies at 36 months was 14% (95% CI: 9.2%, 19%). Subsequent malignancies were grouped into 3 primary categories: solid tumor, hematologic malignancy, and dermatologic malignancy with cumulative incidences at 36 months of 6.1% (95% CI: 3.1%-10%), 4.5% (95% CI: 2.1%-8.1%) and 4.2% (95% CI: 2.1%-7.5%) respectively. Notably, no cases of T cell malignancies were observed. In univariable analysis, increasing age was associated with higher risk for subsequent malignancy. While the overall benefits of CAR T products continue to outweigh their potential risks, more studies and longer follow ups are needed to further demonstrate the risks, patterns, and molecular pathways that lead to the development of subsequent malignancies.
Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/efectos adversos , Anciano , Receptores Quiméricos de Antígenos/inmunología , Adulto , Estudios Retrospectivos , Antígenos CD19/inmunología , Neoplasias Primarias Secundarias/inmunología , Neoplasias Primarias Secundarias/epidemiología , Adulto Joven , Anciano de 80 o más AñosRESUMEN
Bridging therapy (BT) after leukapheresis is required in most relapsed/refractory (R/R) large B-cell lymphoma (LBCL) patients receiving chimeric antigen receptor (CAR) T cells. Bendamustine-containing regimens are a potential BT option. We aimed to assess if this agent had a negative impact on CAR-T outcomes when it was administered as BT. We included R/R LBCL patients from six centers who received systemic BT after leukapheresis from February 2019 to September 2022; patients who only received steroids or had pre-apheresis bendamustine exposure were excluded. Patients were divided into two BT groups, with and without bendamustine. Separate safety and efficacy analyses were carried out for axi-cel and tisa-cel. Of 243 patients who received BT, bendamustine (benda) was included in 62 (26%). There was a higher rate of BT progressors in the non-benda group (62% vs. 45%, p = 0.02). Concerning CAR-T efficacy, complete responses were comparable for benda versus non-benda BT cohorts with axi-cel (70% vs. 53%, p = 0.12) and tisa-cel (44% vs. 36%, p = 0.70). Also, 12-month progression-free and overall survival were not significantly different between BT groups with axi-cel (56% vs. 43% and 71% vs. 63%) and tisa-cel (25% vs. 26% and 52% vs. 48%); there were no differences when BT response was considered. CAR T-cell expansion for each construct was similar between BT groups. Regarding safety, CRS G ≥3 (6% vs. 6%, p = 0.79), ICANS G ≥3 (15% vs. 17%, p = 0.68), severe infections, and neutropenia post-infusion were comparable among BT regimens. BT with bendamustine-containing regimens is safe for patients requiring disease control during CAR T-cell manufacturing.
RESUMEN
Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification system for early and late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies. Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment, with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia. In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer perspectives on future translational and clinical developments.
Asunto(s)
Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Linfocitos T/inmunología , Enfermedades Hematológicas/terapia , Enfermedades Hematológicas/etiologíaRESUMEN
Hematologic toxicity frequently complicates chimeric antigen receptor (CAR) T-cell therapy, resulting in significant morbidity and mortality. In an effort to standardize reporting, the European Hematology Association (EHA) and European Society of Blood and Marrow Transplantation (EBMT) devised the immune effector cell-associated hematotoxicity (ICAHT) grading system, distinguishing between early (day 0-30) and late (after day +30) events based on neutropenia depth and duration. However, manual implementation of ICAHT grading criteria is time-consuming and susceptible to subjectivity and error. To address these challenges, we introduce a novel computational approach, utilizing the R programming language, to automate early and late ICAHT grading. Given the complexities of early ICAHT grading, we benchmarked our approach both manually and computationally in two independent cohorts totaling 1251 patients. Our computational approach offers significant implications by streamlining grading processes, reducing manual time and effort, and promoting standardization across varied clinical settings. We provide this tool to the scientific community alongside a comprehensive implementation guide, fostering its widespread adoption and enhancing reporting consistency for ICAHT.
Asunto(s)
Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversosRESUMEN
In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.
Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Antígeno de Maduración de Linfocitos B , Anticuerpos , Antígenos CD28 , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
This cohort study assesses the increase in second primary malignant neoplasms and T-cell malignant neoplasm cases associated with chimeric antigen receptorT cells.
Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Masculino , FemeninoRESUMEN
ABSTRACT: Cytopenias represent the most common side effect of CAR T-cell therapy (CAR-T) and can predispose for severe infectious complications. Current grading systems, such as the Common Terminology Criteria for Adverse Events (CTCAE), neither reflect the unique quality of post-CAR-T neutrophil recovery, nor do they reflect the inherent risk of infections due to protracted neutropenia. For this reason, a novel EHA/EBMT consensus grading was recently developed for Immune Effector Cell-Associated HematoToxicity (ICAHT). In this multicenter, observational study, we applied the grading system to a large real-world cohort of 549 patients treated with BCMA- or CD19-directed CAR-T for refractory B-cell malignancies (112 multiple myeloma [MM], 334 large B-cell lymphoma [LBCL], 103 mantle cell lymphoma [MCL]) and examined the clinical sequelae of severe (≥3°) ICAHT. The ICAHT grading was strongly associated with the cumulative duration of severe neutropenia (r = 0.92, P < .0001), the presence of multilineage cytopenias, and the use of platelet and red blood cell transfusions. We noted an increased rate of severe ICAHT in patients with MCL vs those with LBCL and MM (28% vs 23% vs 15%). Severe ICAHT was associated with a higher rate of severe infections (49% vs 13%, P < .0001), increased nonrelapse mortality (14% vs 4%, P < .0001), and inferior survival outcomes (1-year progression-free survival: 35% vs 51%, 1-year overall survival: 52% vs 73%, both P < .0001). Importantly, the ICAHT grading demonstrated superior capacity to predict severe infections compared with the CTCAE grading (c-index 0.73 vs 0.55, P < .0001 vs nonsignificant). Taken together, these data highlight the clinical relevance of the novel grading system and support the reporting of ICAHT severity in clinical trials evaluating CAR-T therapies.
Asunto(s)
Citopenia , Linfoma de Células del Manto , Mieloma Múltiple , Neutropenia , Receptores Quiméricos de Antígenos , Humanos , Adulto , Incidencia , Proteínas Adaptadoras Transductoras de Señales , Mieloma Múltiple/terapiaRESUMEN
A subset of patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 chimeric antigen receptor (CAR) T-cell therapy have poor clinical outcomes. We report serum proteins associated with severe immune-mediated toxicities and inferior clinical responses in 146 patients with DLBCL treated with axicabtagene ciloleucel. We develop a simple stratification based on pre-lymphodepletion C reactive protein (CRP) and ferritin to classify patients into low-, intermediate-, and high-risk groups. We observe that patients in the high-risk category were more likely to develop grade ≥3 toxicities and had inferior overall and progression-free survival. We sought to validate our findings with two independent international cohorts demonstrating that patients classified as low-risk have excellent efficacy and safety outcomes. Based on routine and readily available laboratory tests that can be obtained prior to lymphodepleting chemotherapy, this simple risk stratification can inform patient selection for CAR T-cell therapy. SIGNIFICANCE: CAR T-cell therapy has changed the treatment paradigm for patients with relapsed/refractory hematologic malignancies. Despite encouraging efficacy, a subset of patients have poor clinical outcomes. We show that a simple clinically applicable model using pre-lymphodepletion CRP and ferritin can identify patients at high risk of poor outcomes. This article is featured in Selected Articles from This Issue, p. 80.
Asunto(s)
Neoplasias Hematológicas , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/uso terapéutico , Linfoma de Células B Grandes Difuso/terapia , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19/uso terapéutico , Proteínas Sanguíneas , Proteína C-Reactiva , FerritinasRESUMEN
PURPOSE: Approximately 30%-40% of patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) infused with CD19-targeted chimeric antigen receptor (CAR) T cells achieve durable responses. Consensus guidelines suggest avoiding bendamustine before apheresis, but specific data in this setting are lacking. We report distinct outcomes after CAR T-cell therapy according to previous bendamustine exposure. METHODS: The study included CAR T-cell recipients from seven European sites. Safety, efficacy, and CAR T-cell expansion kinetics were analyzed according to preapheresis bendamustine exposure. Additional studies on the impact of the washout period and bendamustine dose were performed. Inverse probability treatment weighting (IPTW) and propensity score matching (PSM) analyses were carried out for all efficacy comparisons between bendamustine-exposed and bendamustine-naïve patients. RESULTS: The study included 439 patients with R/R LBCL infused with CD19-targeted commercial CAR T cells, of whom 80 had received bendamustine before apheresis. Exposed patients had significantly lower CD3+ cells and platelets at apheresis. These patients had a lower overall response rate (ORR, 53% v 72%; P < .01), a shorter progression-free survival (PFS, 3.1 v 6.2 months; P = .04), and overall survival (OS, 10.3 v 23.5 months; P = .01) in comparison with the bendamustine-naïve group. Following adjustment methods for baseline variables, these differences were mitigated. Focusing on the impact of bendamustine washout before apheresis, those with recent (<9 months) exposure (N = 42) displayed a lower ORR (40% v 72%; P < .01), shorter PFS (1.3 v 6.2 months; P < .01), and OS (4.6 v 23.5 months; P < .01) in comparison with bendamustine-naïve patients. These differences remained significant after IPTW and PSM analysis. Conversely, the cumulative dose of bendamustine before apheresis did not affect CAR-T efficacy outcomes. CONCLUSION: Recent bendamustine exposure before apheresis was associated with negative treatment outcomes after CD19-targeted CAR T-cell therapy and should be therefore avoided in CAR T-cell candidates.
Asunto(s)
Eliminación de Componentes Sanguíneos , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Clorhidrato de Bendamustina/efectos adversos , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
Chimeric antigen receptor T-cell therapy (CART) can be administered outpatient yet requires management of potential side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The pre-infusion tumor burden is associated with CRS, yet there is no data on the relevance of pre-infusion tumor growth rate (TGR). Our objective was to investigate TGR for the occurrence and severity of CRS and ICANS. Consecutive patients with available pre-baseline and baseline (BL) imaging before CART were included. TGR was determined as both absolute (abs) and percentage change (%) of Lugano criteria-based tumor burden in relation to days between exams. CRS and ICANS were graded according to ASTCT consensus criteria. Clinical metadata was collected including the international prognostic index (IPI), patient age, ECOG performance status, and LDH. Sixty-two patients were included (median age: 62 years, 40% female). The median pre-BL TGR [abs] and pre-BL TGR [%] was 7.5 mm2/d and 30.9%/d. Pre-BL TGR [abs] and pre-BL TGR [%] displayed a very weak positive correlation with the grade of CRS (r[abs] = 0.14 and r[%] = 0.13) and no correlation with ICANS (r[abs] = - 0.06 and r[%] = - 0.07). There was a weak positive correlation between grade of CRS and grade of ICANS (r = 0.35; p = 0.005) whereas there was no significant correlation of CRS or ICANS to any other of the examined parameters. The pre-infusion TGR before CART was weakly associated with the occurrence of CRS, but not the severity, whereas there were no significant differences in the prediction of ICANS. There was no added information when compared to pre-infusion tumor burden alone. Outpatient planning and toxicity management should not be influenced by the pre-infusion TGR.
Asunto(s)
Linfoma , Neoplasias , Humanos , Femenino , Persona de Mediana Edad , Masculino , Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Neoplasias/terapia , LinfocitosRESUMEN
Autologous CAR-T cell therapy (CAR-T) has improved outcomes for patients with B-cell malignancies. It is associated with the well-described canonical toxicities cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), which may be abrogated by corticosteroids and the anti-IL6 receptor antagonist tocilizumab. Practitioners and researchers should be aware of additional toxicities. Here we review current understanding and management of hematologic toxicities after CAR-T, including cytopenias, coagulopathies, bleeding and clotting events, hemophagocytic-lymphohistiocytosis, and tumor lysis syndrome. We pay particular attention to cytopenias, recently termed immune effector cell-associated hematological toxicity (ICAHT). While the "H" is silent, hematotoxicity is not: ICAHT has the highest cumulative incidence of all immune adverse events following CAR-T. Early cytopenia (day 0-30) is closely linked to lymphodepleting chemotherapy and CRS-related inflammatory stressors. Late ICAHT (after day 30) can present either with or without antecedent count recovery (e.g., "intermittent" vs "aplastic" phenotype), and requires careful evaluation and management strategies. Growth factor support is the mainstay of treatment, with recent evidence demonstrating safety and feasibility of early granulocyte colony-stimulating factor (G-CSF) (e.g., within week 1). In G-CSF refractory cases, autologous stem cell boosts represent a promising treatment avenue, if available. The CAR-HEMATOTOX scoring system, validated for use across lymphoid malignancies (B-NHL, multiple myeloma), enables pretherapeutic risk assessment and presents the potential for risk-adapted management. Recent expert panels have led to diagnostic scoring criteria, severity grading systems, and management strategies for both ICAHT and the recently termed immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), now clarified and defined as a distinct entity from CRS.
Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/diagnóstico , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/terapia , Factor Estimulante de Colonias de Granulocitos , Mieloma Múltiple/tratamiento farmacológicoRESUMEN
Background: Treatment of hematological malignancies with chimeric antigen receptor modified T cells (CART) is highly efficient, but often limited by an immune effector cell-associated neurotoxicity syndrome (ICANS). As conventional MRI is often unremarkable during ICANS, we aimed to examine whether resting-state functional MRI (rsfMRI) is suitable to depict and quantify brain network alterations underlying ICANS in the individual patient. Methods: The dysconnectivity index (DCI) based on rsfMRI was longitudinally assessed in systemic lymphoma patients and 1 melanoma patient during ICANS and before or after clinical resolution of ICANS. Results: Seven lymphoma patients and 1 melanoma patient (19-77 years; 2 female) were included. DCI was significantly increased during ICANS with normalization after recovery (P = .0039). Higher ICANS grades were significantly correlated with increased DCI scores (r = 0.7807; P = .0222). DCI increase was most prominent in the inferior frontal gyrus and the frontal operculum (ie, Broca's area) and in the posterior parts of the superior temporal gyrus and the temporoparietal junction (ie, Wernicke's area) of the language-dominant hemisphere, thus reflecting the major clinical symptoms of nonfluent dysphasia and dyspraxia. Conclusions: RsfMRI-based DCI might be suitable to directly quantify the severity of ICANS in individual patients undergoing CAR T-transfusion. Besides ICANS, DCI seems a promising diagnostic tool to quantify functional brain network alterations during encephalopathies of different etiologies, in general.
RESUMEN
BACKGROUND: Chimeric antigen receptor (CAR)-T-cell therapies have revolutionized the management of acute lymphoblastic leukemia, non-Hodgkin lymphoma, and multiple myeloma but come at the price of unique toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and long-term "on-target off-tumor" effects. METHODS: All of these factors increase infection risk in an already highly immunocompromised patient population. Indeed, infectious complications represent the key determinant of non-relapse mortality after CAR-T cells. The temporal distribution of these risk factors shapes different infection patterns early versus late post-CAR-T-cell infusion. Furthermore, due to the expression of their targets on B lineage cells at different stages of differentiation, CD19, and B-cell maturation antigen (BCMA) CAR-T cells induce distinct immune deficits that could require different prevention strategies. Infection incidence is the highest during the first month post-infusion and subsequently decreases thereafter. However, infections remain relatively common even a year after infusion. RESULTS: Bacterial infections predominate early after CD19, while a more equal distribution between bacterial and viral causes is seen after BCMA CAR-T-cell therapy, and fungal infections are universally rare. Cytomegalovirus (CMV) and other herpesviruses are increasingly breported, but whether routine monitoring is warranted for all, or a subgroup of patients, remains to be determined. Clinical practices vary substantially between centers, and many areas of uncertainty remain, including CMV monitoring, antibacterial and antifungal prophylaxis and duration, use of immunoglobulin replacement therapy, and timing of vaccination. CONCLUSION: Risk stratification tools are available and may help distinguish between infectious and non-infectious causes of fever post-infusion and predict severe infections. These tools need prospective validation, and their integration in clinical practice needs to be systematically studied.
Asunto(s)
Infecciones por Citomegalovirus , Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Humanos , Antígeno de Maduración de Linfocitos B , Neoplasias Hematológicas/terapia , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
BACKGROUND: Chimeric antigen receptor T-cell therapy (CART) is effective for patients with refractory or relapsed lymphoma with prolongation of survival. We aimed to improve the prediction of Lugano criteria for overall survival (OS) at 30-day follow-up (FU1) by including the pre-infusion tumor growth rate (TGRpre-BL) and its early change to 30-day FU1 imaging (TGRpost-BL). METHODS: Consecutive patients with pre-baseline (pre-BL), baseline (BL) and FU1 imaging with CT or positron emission tomography/CT before CART were included. TGR was defined as change of Lugano criteria-based tumor burden between pre-BL, BL and FU1 examinations in relation to days between imaging examinations. Overall response and progression-free survival were determined based on Lugano criteria. Proportional Cox regression analysis studied association of TGR with OS. For survival analysis, OS was analyzed using Kaplan-Meier survival curves. RESULTS: Fifty-nine out of 81 patients met the inclusion criteria. At 30-day FU1 8 patients (13.6%) had a complete response (CR), 25 patients (42.4%) a partial response (PR), 15 patients (25.4%) a stable disease (SD), and 11 patients (18.6%) a progressive disease (PD) according to CT-based Lugano criteria. The median TGRpre-BL was -0.6 mm2/day, 24.4 mm2/day, -5.1 mm2/day, and 18.6 mm2/day and the median TGRpost-BL was -16.7 mm2/day, -102.0 mm2/day, -19.8 mm2/day and 8.5 mm2/day in CR, PR, SD, and PD patients, respectively. PD patients could be subclassified into a cohort with an increase in TGR (7 of 11 patients (64%), PD TGRpre-to-post-BL INCR) and a cohort with a decrease in TGR (4 of 11 patients (36%), PD TGRpre-to-post-BL DECR) from pre-BL to post-BL. PD TGRpre-to-post-BL DECR patients exhibited similar OS to patients classified as SD, while PD TGRpre-to-post-BL INCR patients had significantly shorter OS (65 days vs 471 days, p<0.001). CONCLUSION: In the context of CART, the additional use of TGRpre-BL and its change to TGRpost-BL determined at 30-day FU1 showed better OS prognostication for patients with overall PD according to Lugano criteria. Therefore, this modification of the Lugano classification should be explored as a potential novel imaging biomarker of early response and should be validated prospectively in future studies.