Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853991

RESUMEN

Background: Idiopathic interstitial pneumonias (IIPs) such as idiopathic pulmonary fibrosis (IPF) and interstitial pneumonia with autoimmune features (IPAF), present diagnostic and therapeutic challenges due to their heterogeneous nature. This study aimed to identify intrinsic molecular signatures within the lung microenvironment of these IIPs through proteomic analysis of bronchoalveolar lavage fluid (BALF). Methods: Patients with IIP (n=23) underwent comprehensive clinical evaluation including pre-treatment bronchoscopy and were compared to controls without lung disease (n=5). Proteomic profiling of BALF was conducted using label-free quantitative methods. Unsupervised cluster analyses identified protein expression profiles which were then analyzed to predict survival outcomes and investigate associated pathways. Results: Proteomic profiling successfully differentiated IIP from controls. k-means clustering, based on protein expression revealed three distinct IIP clusters, which were not associated with age, smoking history, or baseline pulmonary function. These clusters had unique survival trajectories and provided more accurate survival predictions than the Gender Age Physiology (GAP) index (C-index 0.794 vs. 0.709). The cluster with the worst prognosis featured decreased inflammatory signaling and complement activation, with pathway analysis highlighting altered immune response pathways related to immunoglobulin production and B cell-mediated immunity. Conclusions: The unsupervised clustering of BALF proteomics provided a novel stratification of IIP patients, with potential implications for prognostic and therapeutic targeting. The identified molecular phenotypes underscore the diversity within the IIP classification and the potential importance of personalized treatments for these conditions. Future validation in larger, multi-ethnic cohorts is essential to confirm these findings and to explore their utility in clinical decision-making for patients with IIP.

2.
medRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38343853

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) leads to progressive loss of lung function and mortality. Understanding mechanisms and markers of lung injury in IPF is paramount to improving outcomes for these patients. Despite the lack of systemic involvement in IPF, many analyses focus on identifying circulating prognostic markers. Using a proteomic discovery method followed by ELISA validation in multiple IPF lung compartments and cohorts we explored novel markers of IPF survival. Methods: In our discovery analysis, agnostic label-free quantitative proteomics differentiated lung tissue protein expression based on survival trajectory (n=10). Following selection of the candidate pathway (neutrophil extracellular trap (NET) formation), we subsequently validated the presence of NETs in the IPF lung microenvironment using fully quantitative assays of known NET remnants in separate IPF cohorts (n=156 and n=52) with bronchoalveolar lavage fluid. We then assessed the correlation of these markers with baseline pulmonary function and survival. Results: Discovery lung tissue proteomics identified NET formation as significantly associated with poor IPF survival. Using fully quantitative confirmatory tests for reproducibility we confirmed the presence of NET markers in IPF BALF and found significant correlations with worse pulmonary function in both cohorts (p<0.03 and p = 0.04 respectively). In the survival cohort, higher levels of NET markers predicted worse survival after adjusting for gender, age, and baseline physiologic severity (hazard ratio range: 1.79-2.19). Conclusions: NET markers were associated with disease severity and worse survival in IPF. These findings suggest NET formation contributes to lung injury and decreased survival in IPF and may represent a potential therapeutic target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA