Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771243

RESUMEN

Variability in brain structure is associated with the capacity for behavioral change. However, a causal link between specific brain areas and behavioral change (such as motor learning) has not been demonstrated. We hypothesized that greater gray matter volume of a primary motor cortex (M1) area active during a hand motor learning task is positively correlated with subsequent learning of the task, and that the disruption of this area blocks learning of the task. Healthy participants underwent structural MRI before learning a skilled hand motor task. Next, participants performed this learning task during fMRI to determine M1 areas functionally active during this task. This functional ROI was anatomically constrained with M1 boundaries to create a group-level "Active-M1" ROI used to measure gray matter volume in each participant. Greater gray matter volume in the left hemisphere Active-M1 ROI was related to greater motor learning in the corresponding right hand. When M1 hand area was disrupted with repetitive transcranial stimulation (rTMS), learning of the motor task was blocked, confirming its causal link to motor learning. Our combined imaging and rTMS approach revealed greater cortical volume in a task-relevant M1 area is causally related to learning of a hand motor task in healthy humans.


Asunto(s)
Sustancia Gris , Mano , Aprendizaje , Imagen por Resonancia Magnética , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Masculino , Femenino , Mano/fisiología , Aprendizaje/fisiología , Adulto , Adulto Joven , Sustancia Gris/fisiología , Sustancia Gris/diagnóstico por imagen , Destreza Motora/fisiología , Mapeo Encefálico , Lateralidad Funcional/fisiología
2.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36765664

RESUMEN

B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

3.
Cancers (Basel) ; 14(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35681662

RESUMEN

The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.

4.
EMBO Rep ; 23(4): e54127, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35099839

RESUMEN

Cell Communication Network factor 4 (CCN4/WISP1) is a matricellular protein secreted by cancer cells that promotes metastasis by inducing the epithelial-mesenchymal transition. While metastasis limits survival, limited anti-tumor immunity also associates with poor patient outcomes with recent work linking these two clinical correlates. Motivated by increased CCN4 correlating with dampened anti-tumor immunity in primary melanoma, we test for a direct causal link by knocking out CCN4 (CCN4 KO) in the B16F0 and YUMM1.7 mouse melanoma models. Tumor growth is reduced when CCN4 KO melanoma cells are implanted in immunocompetent but not in immunodeficient mice. Correspondingly, CD45+ tumor-infiltrating leukocytes are significantly increased in CCN4 KO tumors, with increased natural killer and CD8+ T cells and reduced myeloid-derived suppressor cells (MDSC). Among mechanisms linked to local immunosuppression, CCN4 suppresses IFN-gamma release by CD8+ T cells and enhances tumor secretion of MDSC-attracting chemokines like CCL2 and CXCL1. Finally, CCN4 KO potentiates the anti-tumor effect of immune checkpoint blockade (ICB) therapy. Overall, our results suggest that CCN4 promotes tumor-induced immunosuppression and is a potential target for therapeutic combinations with ICB.


Asunto(s)
Melanoma Experimental , Melanoma , Animales , Linfocitos T CD8-positivos , Comunicación Celular , Tolerancia Inmunológica , Terapia de Inmunosupresión , Melanoma/metabolismo , Ratones
5.
Free Radic Biol Med ; 175: 226-235, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496224

RESUMEN

B-cell acute lymphoblastic leukemia (ALL) affects both pediatric and adult patients. Chemotherapy resistant tumor cells that contribute to minimal residual disease (MRD) underlie relapse and poor clinical outcomes in a sub-set of patients. Targeting mitochondrial oxidative phosphorylation (OXPHOS) in the treatment of refractory leukemic cells is a potential novel approach to sensitizing tumor cells to existing standard of care therapeutic agents. In the current study, we have expanded our previous investigation of the mitoNEET ligand NL-1 in the treatment of ALL to interrogate the functional role of the mitochondrial outer membrane protein mitoNEET in B-cell ALL. Knockout (KO) of mitoNEET (gene: CISD1) in REH leukemic cells led to changes in mitochondrial ultra-structure and function. REH cells have significantly reduced OXPHOS capacity in the KO cells coincident with reduction in electron flow and increased reactive oxygen species. In addition, we found a decrease in lipid content in KO cells, as compared to the vector control cells was observed. Lastly, the KO of mitoNEET was associated with decreased proliferation as compared to control cells when exposed to the standard of care agent cytarabine (Ara-C). Taken together, these observations suggest that mitoNEET is essential for optimal function of mitochondria in B-cell ALL and may represent a novel anti-leukemic drug target for treatment of minimal residual disease.


Asunto(s)
Proteínas Mitocondriales , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfocitos B/metabolismo , Niño , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
6.
Sci Rep ; 11(1): 15840, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349149

RESUMEN

B-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Células Madre Mesenquimatosas/patología , Neoplasia Residual/patología , Osteoblastos/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Transcriptoma , Técnicas de Cocultivo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA-Seq
7.
J Alzheimers Dis ; 75(1): 119-138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32250296

RESUMEN

Cerebrovascular pathology is pervasive in Alzheimer's disease (AD), yet it is unknown whether cerebrovascular dysfunction contributes to the progression or etiology of AD. In human subjects and in animal models of AD, cerebral hypoperfusion and hypometabolism are reported to manifest during the early stages of the disease and persist for its duration. Amyloid-ß is known to cause cellular injury in both neurons and endothelial cells by inducing the production of reactive oxygen species and disrupting intracellular Ca2+ homeostasis. We present a mechanism for mitochondrial degeneration caused by the production of mitochondrial superoxide, which is driven by increased mitochondrial Ca2+ uptake. We found that persistent superoxide production injures mitochondria and disrupts electron transport in cerebrovascular endothelial cells. These observations provide a mechanism for the mitochondrial deficits that contribute to cerebrovascular dysfunction in patients with AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Calcio/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Fragmentos de Péptidos/farmacología , Superóxidos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Células Endoteliales/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo
8.
Pharm Res ; 37(3): 43, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31989336

RESUMEN

PURPOSE: Pyrvinium pamoate (PP) is an anthelmintic drug that has been found to have anti-cancer activity in several cancer types. In the present study, we evaluated PP for potential anti-leukemic activity in B cell acute lymphoblastic leukemia (ALL) cell lines, in an effort to evaluate the repurposing potential of this drug in leukemia. METHODS: ALL cells were treated with PP at various concentrations to determine its effect on cell proliferation. Metabolic function was tested by evaluating Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). Lastly, 3D spheroids were grown, and PP was reformulated into nanoparticles to evaluate distribution effectiveness. RESULTS: PP was found to inhibit ALL proliferation, with varied selectivity to different ALL cell subtypes. We also found that PP's cell death activity was specific for leukemic cells, as primary normal immune cells were resistant to PP-mediated cell death. Metabolic studies indicated that PP, in part, inhibits mitochondrial oxidative phosphorylation. To increase the targeting of PP to a hypoxic bone tumor microenvironment (BTME) niche, we successfully encapsulated PP in a nanoparticle drug delivery system and demonstrated that it retained its anti-leukemic activity in a hemosphere assay. CONCLUSION: We have demonstrated that PP is a novel therapeutic lead compound that counteracts the respiratory reprogramming found in refractory ALL cells and can be effectively formulated into a nanoparticle delivery system to target the BTME.


Asunto(s)
Antineoplásicos/farmacología , Huesos/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Compuestos de Pirvinio/farmacología , Microambiente Tumoral/efectos de los fármacos , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Composición de Medicamentos/métodos , Liberación de Fármacos , Humanos , Nanocápsulas/química , Fosforilación , Transducción de Señal
9.
Front Cell Neurosci ; 13: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837842

RESUMEN

Extracellular vesicles (EVs) are small, membrane-bound nanoparticles released from most, if not all cells, and can carry functionally active cargo (proteins, nucleic acids) which can be taken up by neighboring cells and mediate physiologically relevant effects. In this capacity, EVs are being regarded as novel cell-to-cell communicators, which may play important roles in the progression of neurodegenerative diseases, like Alzheimer's disease (AD). Aside from the canonical physical hallmarks of this disease [amyloid ß (Aß) plaques, neurofibrillary tangles, and widespread cell death], AD is characterized by chronic neuroinflammation and mitochondrial dysfunction. In the current study, we sought to better understand the role of tumor necrosis factor-alpha (TNF-α), known to be involved in inflammation, in mediating alterations in mitochondrial function and EV secretion. Using an immortalized hippocampal cell line, we observed significant reductions in several parameters of mitochondrial oxygen consumption after a 24-h exposure period to TNF-α. In addition, after TNF-α exposure we also observed significant upregulation of two microRNAs (miRNAs; miR-34a and miR-146a) associated with mitochondrial dysfunction in secreted EVs. Despite this, when naïve cells are exposed to EVs isolated from TNF-α treated cells, mitochondrial respiration, proton leak, and reactive oxygen species (ROS) production are all significantly increased. Collectively these data indicate that a potent proinflammatory cytokine, TNF-α, induces significant mitochondrial dysfunction in a neuronal cell type, in part via the secretion of EVs, which significantly alter mitochondrial activity in recipient cells.

10.
Neurochem Int ; 127: 73-79, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30365981

RESUMEN

Aging of the nervous system, and the occurrence of age-related brain diseases such as stroke, are associated with changes to a variety of cellular processes controlled by many distinct genes. MicroRNAs (miRNAs), short non-coding functional RNAs that can induce translational repression or site-specific cleavage of numerous target mRNAs, have recently emerged as important regulators of cellular senescence, aging, and the response to neurological insult. Here, we focused on the assessment of the role of miR-34a in stroke. We noted increases in miR-34a expression in the blood of stroke patients as well as in blood and brain of mice subjected to experimental stroke. Our methodical genetic manipulation of miR-34a expression substantially impacted stroke-associated preclinical outcomes and we have in vitro evidence that these changes may be driven at least in part by disruptions to blood brain barrier integrity and mitochondrial oxidative phosphorylation in endothelial cells. Finally, aging, independent of brain injury, appears to be associated with shifts in circulating miRNA profiles. Taken together, these data support a role for miRNAs, and specifically miR-34a, in brain aging and the physiological response to age-related neurological insult, and lay the groundwork for future investigation of this novel therapeutic target.


Asunto(s)
Isquemia Encefálica/genética , Infarto Cerebral/genética , MicroARNs/genética , Accidente Cerebrovascular/genética , Envejecimiento/fisiología , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Senescencia Celular/genética , Infarto Cerebral/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Factores de Riesgo , Accidente Cerebrovascular/metabolismo
11.
Metab Brain Dis ; 33(6): 2039-2044, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30267298

RESUMEN

Chronic cerebrovascular hypoperfusion results in vascular dementia and increases predisposition to lacunar infarcts. However, there are no suitable animal models. In this study, we developed a novel model for chronic irreversible cerebral hypoperfusion in mice. Briefly, an ameroid constrictor was placed on the right carotid artery to gradually occlude the vessel, while a microcoil was placed on the left carotid artery to prevent compensation of the blood flow. This procedure resulted in a gradual hypoperfusion developing over a period of 34 days with no cerebral blood flow recovery. Histological analysis of the brain revealed neuronal and axonal degeneration as well as necrotic lesions. The most severely affected regions were located in the hippocampus and the corpus callosum. Overall, our paradigm is a viable model to study brain pathology resulting from gradual cerebrovascular hypoperfusion.


Asunto(s)
Arteria Carótida Común/patología , Estenosis Carotídea/patología , Circulación Cerebrovascular/fisiología , Demencia Vascular/patología , Modelos Animales de Enfermedad , Animales , Arteria Carótida Común/fisiopatología , Estenosis Carotídea/complicaciones , Estenosis Carotídea/fisiopatología , Demencia Vascular/etiología , Demencia Vascular/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
FEBS J ; 285(6): 1033-1050, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29399967

RESUMEN

While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As an emerging mode of intercellular communication, exosomes secreted by malignant cells can deliver a complex payload of coding and noncoding RNA to cells within the tumor microenvironment. Here, we quantified the RNA payload within tumor-derived exosomes and the resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from B16F0 melanoma cells were enriched for a subset of coding and noncoding RNAs that did not reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently coexpressed gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered mitochondrial respiration, which was confirmed independently, and upregulated genes associated with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic effect on downregulating target mRNA levels. DATABASES: Gene expression data are available in the GEO database under the accession SuperSeries number GSE102951.


Asunto(s)
Exosomas/genética , Mitocondrias/metabolismo , Linfocitos T Citotóxicos/metabolismo , Transcriptoma , Animales , Línea Celular Tumoral , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , MicroARNs/genética , Consumo de Oxígeno , ARN Mensajero/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-32149160

RESUMEN

OBJECTIVE: Mitochondrial dysfunction is known to be implicated in stroke, but the complex mechanisms of stroke have led to few stroke therapies. The present study to disrupted mitochondrial oxidative phosphorylation through a known electron transport chain (ETC) uncoupler, Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP). Analyzing the resulting neurological deficits as well as infarct volume could help determine the role of mitochondria in stroke outcome and determine whether uncoupling the ETC could potentially be a strategy for new stroke therapies. The objective of this study was to determine the effects of uncoupling electron flow on mitochondrial oxidative phosphorylation and stroke infarction. METHODS: Cerebral endovascular cells (CECs) were treated with various concentrations of FCCP, and bioenergetics were measured. For the stroke mouse model, FCCP (1 mg/kg, i.p) or vehicle was administered followed by 1-hour transient middle cerebral artery occlusion (tMCAO). Infarct volume was measured after a 23-hour reperfusion, and triphenyl tetrazolium chloride (TTC) staining was used to assess infarct volume. RESULTS: FCCP significantly decreased basal respiration, ATP turnover, maximal respiration, and spare capacity when the concentration of FCCP was greater than 1000 nM. The mice pretreated with FCCP had a significantly increased infarct volume within the cortex, striatum, and total hemisphere. Mice receiving FCCP had a significantly increased neurological deficit score compared to the vehicle. CONCLUSIONS: FCCP compromised mitochondrial oxidative phosphorylation in CECs in a dose-dependent manner. Uncoupling the electron transport chain with FCCP prior to tMCAO exacerbated stroke infarction in mice.

14.
Am J Physiol Heart Circ Physiol ; 312(3): H446-H458, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011589

RESUMEN

Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Corazón/diagnóstico por imagen , Miocardio/patología , Nanoestructuras/toxicidad , Efectos Tardíos de la Exposición Prenatal/patología , Envejecimiento , Animales , Ecocardiografía , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Cardiopatías/inducido químicamente , Cardiopatías/diagnóstico por imagen , Cardiopatías/patología , Pruebas de Función Cardíaca , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Titanio/toxicidad
15.
J Vis Exp ; (117)2016 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-27911398

RESUMEN

The integrity of the blood-brain-barrier (BBB) is critical to prevent brain injury. Cerebral vascular endothelial (CVE) cells are one of the cell types that comprise the BBB; these cells have a very high-energy demand, which requires optimal mitochondrial function. In the case of disease or injury, the mitochondrial function in these cells can be altered, resulting in disease or the opening of the BBB. In this manuscript, we introduce a method to measure mitochondrial function in CVE cells by using whole, intact cells and a bioanalyzer. A mito-stress assay is used to challenge the cells that have been perturbed, either physically or chemically, and evaluate their bioenergetic function. Additionally, this method also provides a useful way to screen new therapeutics that have direct effects on mitochondrial function. We have optimized the cell density necessary to yield oxygen consumption rates that allow for the calculation of a variety of mitochondrial parameters, including ATP production, maximal respiration, and spare capacity. We also show the sensitivity of the assay by demonstrating that the introduction of the microRNA, miR-34a, leads to a pronounced and detectable decrease in mitochondrial activity. While the data shown in this paper is optimized for the bEnd.3 cell line, we have also optimized the protocol for primary CVE cells, further suggesting the utility in preclinical and clinical models.


Asunto(s)
Circulación Cerebrovascular , Endotelio Vascular/metabolismo , Mitocondrias/metabolismo , Barrera Hematoencefálica , Encéfalo/irrigación sanguínea , Endotelio Vascular/ultraestructura , Metabolismo Energético , Humanos , Consumo de Oxígeno
16.
Exp Hematol ; 44(1): 50-9.e1-2, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26407636

RESUMEN

Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the survival of ALL patients. However, chemoresistant minimal residual disease that persists following cessation of therapy contributes to aggressive relapse. The bone marrow microenvironment (BMM) is an established "site of sanctuary" for ALL, as well as myeloid-lineage hematopoietic disease, with signals in this unique anatomic location contributing to drug resistance. Several models have been developed to recapitulate the interactions between the BMM and ALL cells. However, many in vitro models fail to accurately reflect the level of protection afforded to the most resistant subset of leukemic cells during coculture with BMM elements. Preclinical in vivo models have advantages, but can be costly, and are often not fully informed by optimal in vitro studies. We describe an innovative extension of 2-D coculture wherein ALL cells uniquely interact with bone marrow-derived stromal cells. Tumor cells in this model bury beneath primary human bone marrow-derived stromal cells or osteoblasts, termed "phase dim" ALL, and exhibit a unique phenotype characterized by altered metabolism, distinct protein expression profiles, increased quiescence, and pronounced chemotherapy resistance. Investigation focused on the phase dim subpopulation may more efficiently inform preclinical design and investigation of the minimal residual disease and relapse that arise from BMM-supported leukemic tumor cells.


Asunto(s)
Médula Ósea/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Microambiente Tumoral , Técnicas de Cocultivo , Humanos , Fenotipo
17.
J Neurochem ; 132(4): 443-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25492727

RESUMEN

Tumor necrosis factor alpha (TNF-α) is known to exacerbate ischemic brain injury; however, the mechanism is unknown. Previous studies have evaluated the effects of TNF-α on neurons with long exposures to high doses of TNF-α, which is not pathophysiologically relevant. We characterized the rapid effects of TNF-α on basal respiration, ATP production, and maximal respiration using pathophysiologically relevant, post-stroke concentrations of TNF-α. We observed a reduction in mitochondrial function as early as 1.5 h after exposure to low doses of TNF-α, followed by a decrease in cell viability in HT-22 cells and primary neurons. Subsequently, we used the HT-22 cell line to determine the mechanism by which TNF-α causes a rapid and profound reduction in mitochondrial function. Pre-treating with TNF-R1 antibody, but not TNF-R2 antibody, ameliorated the neurotoxic effects of TNF-α, indicating that TNF-α exerts its neurotoxic effects through TNF-R1. We observed an increase in caspase 8 activity and a decrease in mitochondrial membrane potential after exposure to TNF-α which resulted in a release of cytochrome c from the mitochondria into the cytosol. These novel findings indicate for the first time that an acute exposure to pathophysiologically relevant concentrations of TNF-α has neurotoxic effects mediated by a rapid impairment of mitochondrial function. This study focuses on the neurotoxic mechanism of a pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α). We demonstrate a prompt mitochondrial dysfunction followed by nerve cell loss after exposure to TNF-α. These studies may provide evidence that the immune system can rapidly and adversely affect brain function and that TNF-α signaling may be a target for neuroprotection.


Asunto(s)
Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hipocampo/citología , Ratones , Factores de Tiempo
18.
Nat Immunol ; 15(4): 343-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24531343

RESUMEN

The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Infecciones por Virus ADN/inmunología , Virus ADN/inmunología , Inflamasomas/metabolismo , Macrófagos/inmunología , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Caspasa 1/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Humanos , Inmunidad/genética , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Alineación de Secuencia , Transgenes/genética , Proteínas Virales/genética , Homóloga LST8 de la Proteína Asociada al mTOR
19.
PLoS One ; 7(2): e30758, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363485

RESUMEN

Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-ß1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-ß1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche.


Asunto(s)
Antineoplásicos/efectos adversos , Células de la Médula Ósea/patología , Osteoblastos/patología , Animales , Antígenos CD34/metabolismo , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Línea Celular , Quimiocina CXCL12/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Melfalán/efectos adversos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Proteínas Recombinantes/farmacología , Factor de Crecimiento Transformador beta1/farmacología
20.
Cytokine ; 58(2): 245-52, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22356805

RESUMEN

Bone marrow stromal cells (BMSC) and osteoblasts are critical components of the microenvironment that support hematopoietic recovery following bone marrow transplantation. Aggressive chemotherapy not only affects tumor cells, but also influences additional structural and functional components of the microenvironment. Successful reconstitution of hematopoiesis following stem cell or bone marrow transplantation after aggressive chemotherapy is dependent upon components of the microenvironment maintaining their supportive function. This includes secretion of soluble factors and expression of cellular adhesion molecules that impact on development of hematopoietic cells. In the current study, we investigated the effects of chemotherapy treatment on BMSC and human osteoblast (HOB) expression of interleukin-6 (IL-6) as one regulatory factor. IL-6 is a pleiotropic cytokine which has diverse effects on hematopoietic cell development. In the current study we demonstrate that exposure of BMSC or HOB to melphalan leads to decreases in IL-6 protein expression. Decreased IL-6 protein is the most pronounced following melphalan exposure compared to several other chemotherapeutic agents tested. We also observed that melphalan decreased IL-6 mRNA in both BMSC and HOB. Finally, using a model of BMSC or HOB co-cultured with myeloma cells exposed to melphalan, we observed that IL-6 protein was also decreased, consistent with treatment of adherent cells alone. Collectively, these observations are of dual significance. First, suggesting that chemotherapy induced IL-6 deficits in the bone marrow occur which may result in defective hematopoietic support of early progenitor cells. In contrast, the decrease in IL-6 protein may be a beneficial mechanism by which melphalan acts as a valuable therapeutic agent for treatment of multiple myeloma, where IL-6 present in the bone marrow acts as a proliferative factor and contributes to disease progression. Taken together, these data emphasize the responsiveness of the microenvironment to diverse stress that is important to consider in therapeutic settings.


Asunto(s)
Células de la Médula Ósea/metabolismo , Interleucina-6/metabolismo , Melfalán/toxicidad , Osteoblastos/metabolismo , Células del Estroma/metabolismo , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Humanos , Interleucina-6/genética , Polimorfismo Genético , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA