Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Metabolism ; 153: 155813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307325

RESUMEN

Type 2 diabetes (T2DM) is caused by the interaction of multiple genes and environmental factors. T2DM is characterized by hyperglycemia, insulin secretion deficiency and insulin resistance. Chronic hyperglycemia induces ß-cell dysfunction, loss of ß-cell mass/identity and ß-cell dedifferentiation. Intermittent fasting (IF) a commonly used dietary regimen for weight-loss, also induces metabolic benefits including reduced blood glucose, improved insulin sensitivity, reduced adiposity, inflammation, oxidative-stress and increased fatty-acid oxidation; however, the mechanisms underlying these effects in pancreatic ß-cells remain elusive. KK and KKAy, mouse models of polygenic T2DM spontaneously develop hyperglycemia, glucose intolerance, glucosuria, impaired insulin secretion and insulin resistance. To determine the long-term effects of IF on T2DM, 6-weeks old KK and KKAy mice were subjected to IF for 16 weeks. While KKAy mice fed ad-libitum demonstrated severe hyperglycemia (460 mg/dL) at 6 weeks of age, KK mice showed blood glucose levels of 230 mg/dL, but progressively became severely diabetic by 22-weeks. Strikingly, both KK and KKAy mice subjected to IF showed reduced blood glucose and plasma insulin levels, decreased body weight gain, reduced plasma triglycerides and cholesterol, and improved insulin sensitivity. They also demonstrated enhanced expression of the ß-cell transcription factors NKX6.1, MAFA and PDX1, and decreased expression of ALDH1a3 suggesting protection from loss of ß-cell identity by IF. IF normalized glucose stimulated insulin secretion in islets from KK and KKAy mice, demonstrating improved ß-cell function. In addition, hepatic steatosis, gluconeogenesis and inflammation was decreased particularly in KKAy-IF mice, indicating peripheral benefits of IF. These results have important implications as an optional intervention for preservation of ß-cell identity and function in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Animales , Ratones , Glucemia , Ayuno Intermitente , Inflamación
2.
JCI Insight ; 8(10)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129980

RESUMEN

Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-ß (Aß) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aß pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aß, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aß pathology in patients with diabetes or prediabetes.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Canales KATP/metabolismo , Enfermedad de Alzheimer/patología , Diabetes Mellitus Tipo 2/complicaciones , Glucosa , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
3.
Cell Metab ; 35(2): 332-344.e7, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36634673

RESUMEN

Hyperinsulinemia often precedes type 2 diabetes. Palmitoylation, implicated in exocytosis, is reversed by acyl-protein thioesterase 1 (APT1). APT1 biology was altered in pancreatic islets from humans with type 2 diabetes, and APT1 knockdown in nondiabetic islets caused insulin hypersecretion. APT1 knockout mice had islet autonomous increased glucose-stimulated insulin secretion that was associated with prolonged insulin granule fusion. Using palmitoylation proteomics, we identified Scamp1 as an APT1 substrate that localized to insulin secretory granules. Scamp1 knockdown caused insulin hypersecretion. Expression of a mutated Scamp1 incapable of being palmitoylated in APT1-deficient cells rescued insulin hypersecretion and nutrient-induced apoptosis. High-fat-fed islet-specific APT1-knockout mice and global APT1-deficient db/db mice showed increased ß cell failure. These findings suggest that APT1 is regulated in human islets and that APT1 deficiency causes insulin hypersecretion leading to ß cell failure, modeling the evolution of some forms of human type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipoilación , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Proteínas de Transporte Vesicular/metabolismo
4.
Diabetes ; 72(2): 170-174, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669001

RESUMEN

Chronic hyperglycemia increases pancreatic ß-cell metabolic activity, contributing to glucotoxicity-induced ß-cell failure and loss of functional ß-cell mass, potentially in multiple forms of diabetes. In this perspective we discuss the novel paradoxical and counterintuitive concept of inhibiting glycolysis, particularly by targeted inhibition of glucokinase, the first enzyme in glycolysis, as an approach to maintaining glucose sensing and preserving functional ß-cell mass, thereby improving insulin secretion, in the treatment of diabetes.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Glucoquinasa/metabolismo , Insulina/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo
5.
J Am Heart Assoc ; 11(24): e027363, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36515236

RESUMEN

Background Cardiomegaly caused by left ventricular hypertrophy is a risk factor for development of congestive heart failure, classically associated with decreased systolic and/or diastolic ventricular function. Less attention has been given to the phenotype of left ventricular hypertrophy with enhanced ventricular function and increased cardiac output, which is potentially associated with high-output heart failure. Lack of recognition may pose diagnostic ambiguity and management complexities. Methods and Results We sought to systematically characterize high-output cardiac hypertrophy in subjects with Cantu syndrome (CS), caused by gain-of-function variants in ABCC9, which encodes cardiovascular KATP (ATP-sensitive potassium) channel subunits. We studied the cardiovascular phenotype longitudinally in 31 subjects with CS with confirmed ABCC9 variants (median [interquartile range] age 8 years [3-32 years], body mass index 19.9 [16.5-22.9], 16 male subjects). Subjects with CS presented with significant left ventricular hypertrophy (left ventricular mass index 86.7 [57.7-103.0] g/m2 in CS, n=30; 26.6 [24.1-32.8] g/m2 in controls, n=17; P<0.0001) and low blood pressure (systolic 94.5 [90-103] mm Hg in CS, n=17; 109 [98-115] mm Hg in controls, n=17; P=0.0301; diastolic 60 [56-66] mm Hg in CS, n=17; 69 [65-72] mm Hg in control, n=17; P=0.0063). Most (21/31) subjects with CS exhibited eccentric hypertrophy with normal left ventricular wall thickness. Congestive heart failure symptoms were evident in 4 of the 5 subjects with CS aged >40 years on long-term follow-up. Conclusions The data define the natural history of high-output cardiac hypertrophy resulting from decreased systemic vascular resistance in subjects with CS, a defining population for long-term consequences of high-output hypertrophy caused by low systemic vascular resistance, and the potential for progression to high-output heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Hipertricosis , Hipertrofia Ventricular Izquierda , Osteocondrodisplasias , Humanos , Masculino , Adenosina Trifosfato , Cardiomegalia/genética , Insuficiencia Cardíaca/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/complicaciones , Canales KATP , Fenotipo , Resistencia Vascular , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Osteocondrodisplasias/genética , Hipertricosis/genética
6.
Islets ; 14(1): 200-209, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36458573

RESUMEN

ATP-sensitive potassium channel (KATP)gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete KATP LOF do reiterate mild hyperinsulinism, KATP knockout animals do not exhibit persistent hyperinsulinism. We have shown that islet excitability and glucose homeostasis are regulated by identical KATP channels in zebrafish. SUR1 truncation mutation (K499X) was introduced into the abcc8 gene to explore the possibility of using zebrafish for modeling human HI. Patch-clamp analysis confirmed the complete absence of channel activity in ß-cells from K499X (SUR1-/-) fish. No difference in random blood glucose was detected in heterozygous SUR1+/- fish nor in homozygous SUR1-/- fish, mimicking findings in SUR1 knockout mice. Mutant fish did, however, demonstrate impaired glucose tolerance, similar to partial LOF mouse models. In paralleling features of mammalian diabetes and hyperinsulinism resulting from equivalent LOF mutations, these gene-edited animals provide valid zebrafish models of KATP -dependent pancreatic diseases.


Asunto(s)
Intolerancia a la Glucosa , Hiperinsulinismo , Animales , Ratones , Adenosina Trifosfato , Ratones Noqueados , Ratones Transgénicos , Receptores de Sulfonilureas/genética , Pez Cebra/genética , Modelos Animales de Enfermedad
7.
Diabetes ; 71(6): 1233-1245, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35294000

RESUMEN

ß-Cell failure and loss of ß-cell mass are key events in diabetes progression. Although insulin hypersecretion in early stages has been implicated in ß-cell exhaustion/failure, loss of ß-cell mass still occurs in KATP gain-of-function (GOF) mouse models of human neonatal diabetes in the absence of insulin secretion. Thus, we hypothesize that hyperglycemia-induced increased ß-cell metabolism is responsible for ß-cell failure and that reducing glucose metabolism will prevent loss of ß-cell mass. To test this, KATP-GOF mice were crossed with mice carrying ß-cell-specific glucokinase haploinsufficiency (GCK+/-), to genetically reduce glucose metabolism. As expected, both KATP-GOF and KATP-GOF/GCK+/- mice showed lack of glucose-stimulated insulin secretion. However, KATP-GOF/GCK+/- mice demonstrated markedly reduced blood glucose, delayed diabetes progression, and improved glucose tolerance compared with KATP-GOF mice. In addition, decreased plasma insulin and content, increased proinsulin, and augmented plasma glucagon observed in KATP-GOF mice were normalized to control levels in KATP-GOF/GCK+/- mice. Strikingly, KATP-GOF/GCK+/- mice demonstrated preserved ß-cell mass and identity compared with the marked decrease in ß-cell identity and increased dedifferentiation observed in KATP-GOF mice. Moreover KATP-GOF/GCK+/- mice demonstrated restoration of body weight and liver and brown/white adipose tissue mass and function and normalization of physical activity and metabolic efficiency compared with KATP-GOF mice. These results demonstrate that decreasing ß-cell glucose signaling can prevent glucotoxicity-induced loss of insulin content and ß-cell failure independently of compensatory insulin hypersecretion and ß-cell exhaustion.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Animales , Diabetes Mellitus/metabolismo , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Transgénicos
8.
PLoS One ; 17(2): e0258054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180212

RESUMEN

Progressive loss of pancreatic ß-cell functional mass and anti-diabetic drug responsivity are classic findings in diabetes, frequently attributed to compensatory insulin hypersecretion and ß-cell exhaustion. However, loss of ß-cell mass and identity still occurs in mouse models of human KATP-gain-of-function induced Neonatal Diabetes Mellitus (NDM), in the absence of insulin secretion. Here we studied the temporal progression and mechanisms underlying glucotoxicity-induced loss of functional ß-cell mass in NDM mice, and the effects of sodium-glucose transporter 2 inhibitors (SGLT2i) therapy. Upon tamoxifen induction of transgene expression, NDM mice rapidly developed severe diabetes followed by an unexpected loss of insulin content, decreased proinsulin processing and increased proinsulin at 2-weeks of diabetes. These early events were accompanied by a marked increase in ß-cell oxidative and ER stress, without changes in islet cell identity. Strikingly, treatment with the SGLT2 inhibitor dapagliflozin restored insulin content, decreased proinsulin:insulin ratio and reduced oxidative and ER stress. However, despite reduction of blood glucose, dapagliflozin therapy was ineffective in restoring ß-cell function in NDM mice when it was initiated at >40 days of diabetes, when loss of ß-cell mass and identity had already occurred. Our data from mouse models demonstrate that: i) hyperglycemia per se, and not insulin hypersecretion, drives ß-cell failure in diabetes, ii) recovery of ß-cell function by SGLT2 inhibitors is potentially through reduction of oxidative and ER stress, iii) SGLT2 inhibitors revert/prevent ß-cell failure when used in early stages of diabetes, but not when loss of ß-cell mass/identity already occurred, iv) common execution pathways may underlie loss and recovery of ß-cell function in different forms of diabetes. These results may have important clinical implications for optimal therapeutic interventions in individuals with diabetes, particularly for those with long-standing diabetes.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mutación con Ganancia de Función , Glucósidos/administración & dosificación , Enfermedades del Recién Nacido/tratamiento farmacológico , Enfermedades del Recién Nacido/genética , Células Secretoras de Insulina/metabolismo , Canales KATP/genética , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Administración Oral , Animales , Glucemia/metabolismo , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Femenino , Mutación con Ganancia de Función/efectos de los fármacos , Humanos , Recién Nacido , Enfermedades del Recién Nacido/inducido químicamente , Enfermedades del Recién Nacido/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Resultado del Tratamiento
9.
Diabetes ; 71(3): 367-375, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196393

RESUMEN

Secretion of insulin from pancreatic ß-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of ß-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.


Asunto(s)
Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Canales KATP/fisiología , Animales , Glucemia , Calcio/farmacología , Humanos , Resistencia a la Insulina , Secreción de Insulina/genética , Secreción de Insulina/fisiología , Canales KATP/genética , Ratones , Ratones Noqueados , Mutación , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/fisiología
10.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732576

RESUMEN

ATP-sensitive potassium (KATP) gain-of-function (GOF) mutations cause neonatal diabetes, with some individuals exhibiting developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. Mice expressing KATP-GOF mutations pan-neuronally (nKATP-GOF) demonstrated sensorimotor and cognitive deficits, whereas hippocampus-specific hKATP-GOF mice exhibited mostly learning and memory deficiencies. Both nKATP-GOF and hKATP-GOF mice showed altered neuronal excitability and reduced hippocampal long-term potentiation (LTP). Sulfonylurea therapy, which inhibits KATP, mildly improved sensorimotor but not cognitive deficits in KATP-GOF mice. Mice expressing KATP-GOF mutations in pancreatic ß-cells developed severe diabetes but did not show learning and memory deficits, suggesting neuronal KATP-GOF as promoting these features. These findings suggest a possible origin of cognitive dysfunction in DEND and the need for novel drugs to treat neurological features induced by neuronal KATP-GOF.


Asunto(s)
Trastornos del Conocimiento/etiología , Diabetes Mellitus/psicología , Epilepsia/psicología , Hipocampo/metabolismo , Enfermedades del Recién Nacido/psicología , Canales KATP/genética , Trastornos Motores/etiología , Trastornos Psicomotores/psicología , Animales , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/metabolismo , Femenino , Mutación con Ganancia de Función , Enfermedades del Recién Nacido/etiología , Enfermedades del Recién Nacido/metabolismo , Discapacidades para el Aprendizaje/tratamiento farmacológico , Discapacidades para el Aprendizaje/etiología , Potenciación a Largo Plazo , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratones Transgénicos , Trastornos Psicomotores/etiología , Trastornos Psicomotores/metabolismo , Compuestos de Sulfonilurea/uso terapéutico
11.
Diabetes Obes Metab ; 23(11): 2455-2465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34212475

RESUMEN

AIMS: Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. MATERIALS AND METHODS: Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. RESULTS: At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. CONCLUSIONS: This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Obesidad Infantil , Animales , Glucemia , Diabetes Mellitus Tipo 1/prevención & control , Dieta Alta en Grasa , Femenino , Ratones , Ratones Endogámicos NOD
12.
J Bone Miner Res ; 36(7): 1403-1415, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33831261

RESUMEN

High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V /Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V /Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V /Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Animales , Densidad Ósea/genética , Mutación con Ganancia de Función , Humanos , Hiperglucemia/genética , Insulina/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones , Mutación/genética
13.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33529173

RESUMEN

Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.


Asunto(s)
Cardiomegalia , Hipertricosis , Osteocondrodisplasias , Receptores de Sulfonilureas/genética , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Femenino , Humanos , Hipertricosis/genética , Hipertricosis/metabolismo , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Miocitos Cardíacos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo
14.
J Clin Invest ; 130(12): 6235-6237, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196460

RESUMEN

Patients with type 2 diabetes (T2D) fail to secrete insulin in response to increased glucose levels that occur with eating. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two incretins secreted from gastrointestinal cells that amplify insulin secretion when glucose is high. In this issue of the JCI, Oduori et al. explore the role of ATP-sensitive K+ (KATP) channels in maintaining glucose homeostasis. In persistently depolarized ß cells from KATP channel knockout (KO) mice, the researchers revealed a shift in G protein signaling from the Gs family to the Gq family. This shift explains why GLP-1, which signals via Gq, but not GIP, which signals preferentially via Gs, can effectively potentiate secretion in islets from the KATP channel-deficient mice and in other models of KATP deficiency, including diabetic KK-Ay mice. Their results provide one explanation for differential insulinotropic potential of incretins in human T2D and point to a potentially unifying model for T2D progression itself.


Asunto(s)
Diabetes Mellitus Tipo 2 , Incretinas , Animales , Glucemia , Diabetes Mellitus Tipo 2/genética , Polipéptido Inhibidor Gástrico/genética , Péptido 1 Similar al Glucagón , Humanos , Insulina , Ratones
15.
Function (Oxf) ; 1(1): zqaa004, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865539

RESUMEN

Dramatic cardiomegaly arising from gain-of-function (GoF) mutations in the ATP-sensitive potassium (KATP) channels genes, ABCC9 and KCNJ8, is a characteristic feature of Cantú syndrome (CS). How potassium channel over-activity results in cardiac hypertrophy, as well as the long-term consequences of cardiovascular remodeling in CS, is unknown. Using genome-edited mouse models of CS, we therefore sought to dissect the pathophysiological mechanisms linking KATP channel GoF to cardiac remodeling. We demonstrate that chronic reduction of systemic vascular resistance in CS is accompanied by elevated renin-angiotensin signaling, which drives cardiac enlargement and blood volume expansion. Cardiac enlargement in CS results in elevation of basal cardiac output, which is preserved in aging. However, the cardiac remodeling includes altered gene expression patterns that are associated with pathological hypertrophy and are accompanied by decreased exercise tolerance, suggestive of reduced cardiac reserve. Our results identify a high-output cardiac hypertrophy phenotype in CS which is etiologically and mechanistically distinct from other myocardial hypertrophies, and which exhibits key features of high-output heart failure (HOHF). We propose that CS is a genetically-defined HOHF disorder and that decreased vascular smooth muscle excitability is a novel mechanism for HOHF pathogenesis.


Asunto(s)
Mutación con Ganancia de Función , Canales KATP , Ratones , Animales , Canales KATP/genética , Mutación con Ganancia de Función/genética , Remodelación Ventricular , Receptores de Sulfonilureas/genética , Cardiomegalia/genética , Adenosina Trifosfato
16.
J Physiol ; 598(15): 3107-3127, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32372450

RESUMEN

KEY POINTS: Spontaneous contractions are essential for normal lymph transport and these contractions are exquisitely sensitive to the KATP channel activator pinacidil. KATP channel Kir6.1 and SUR2B subunits are expressed in mouse lymphatic smooth muscle (LSM) and form functional KATP channels as verified by electrophysiological techniques. Global deletion of Kir6.1 or SUR2 subunits results in severely impaired lymphatic contractile responses to pinacidil. Smooth muscle-specific expression of Kir6.1 gain-of-function mutant (GoF) subunits results in profound lymphatic contractile dysfunction and LSM hyperpolarization that is partially rescued by the KATP inhibitor glibenclamide. In contrast, lymphatic endothelial-specific expression of Kir6.1 GoF has essentially no effect on lymphatic contractile function. The high sensitivity of LSM to KATP channel GoF offers an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1 or SUR2, and suggests that glibenclamide may be an appropriate therapeutic agent. ABSTRACT: This study aimed to understand the functional expression of KATP channel subunits in distinct lymphatic cell types, and assess the consequences of altered KATP channel activity on lymphatic pump function. KATP channel subunits Kir6.1 and SUR2B were expressed in mouse lymphatic muscle by PCR, but only Kir6.1 was expressed in lymphatic endothelium. Spontaneous contractions of popliteal lymphatics from wild-type (WT) (C57BL/6J) mice, assessed by pressure myography, were very sensitive to inhibition by the SUR2-specific KATP channel activator pinacidil, which hyperpolarized both mouse and human lymphatic smooth muscle (LSM). In vessels from mice with deletion of Kir6.1 (Kir6.1-/- ) or SUR2 (SUR2[STOP]) subunits, contractile parameters were not significantly different from those of WT vessels, suggesting that basal KATP channel activity in LSM is not an essential component of the lymphatic pacemaker, and does not exert a strong influence over contractile strength. However, these vessels were >100-fold less sensitive than WT vessels to pinacidil. Smooth muscle-specific expression of a Kir6.1 gain-of-function (GoF) subunit resulted in severely impaired lymphatic contractions and hyperpolarized LSM. Membrane potential and contractile activity was partially restored by the KATP channel inhibitor glibenclamide. In contrast, lymphatic endothelium-specific expression of Kir6.1 GoF subunits had negligible effects on lymphatic contraction frequency or amplitude. Our results demonstrate a high sensitivity of lymphatic contractility to KATP channel activators through activation of Kir6.1/SUR2-dependent channels in LSM. In addition, they offer an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1/SUR2.


Asunto(s)
Mutación con Ganancia de Función , Hipertricosis , Adenosina Trifosfato , Animales , Humanos , Canales KATP/genética , Ratones , Ratones Endogámicos C57BL , Músculo Liso , Receptores de Sulfonilureas/genética
17.
Am J Physiol Gastrointest Liver Physiol ; 319(1): G36-G42, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463335

RESUMEN

After 50% proximal small bowel resection (SBR) in mice, we have demonstrated hepatic steatosis, impaired glucose metabolism without insulin resistance, and increased pancreatic islet area. We sought to determine the consequences of SBR on pancreatic ß-cell morphology, proliferation, and expression of a key regulatory hormone, glucagon-like peptide-1 (GLP-1). C57BL/6 mice underwent 50% SBR or sham operation. At 10 wk, pancreatic insulin content and secretion was measured by ELISA. Immunohistochemistry was performed to determine structural alterations in pancreatic α-and ß-cells. Western blot analysis was used to measure GLP-1R expression, and immunoassay was used to measure plasma insulin and GLP-1. Experiments were repeated by administering a GLP-1 agonist (exendin-4) to a cohort of mice following SBR. After SBR, there was pancreatic islet hypertrophy and impaired glucose tolerance. The proportion of α and ß cells was not grossly altered. Whole pancreas and pancreatic islet insulin content was not significantly different; however, SBR mice demonstrated decreased insulin secretion in both static incubation and islet perfusion experiments. The expression of pancreatic GLP-1R was decreased approximately twofold after SBR, compared with sham and serum GLP-1, was decreased. These metabolic derangements were mitigated after administration of the GLP-1 agonist. Following massive SBR, there is significant hypertrophy of pancreatic islet cells with morphologically intact α- and ß-cells. Significantly reduced pancreatic insulin release in both static and dynamic conditions demonstrate a perturbed second phase of insulin secretion. GLP-1 is a key mediator of this amplification pathway. Decreased expression of serum GLP-1 and pancreatic GLP-1R in face of no change in insulin content presents a novel pathway for enteropancreatic glucose regulation following SBR.NEW & NOTEWORTHY Metabolic changes occur following intestinal resection; however, the effects on pancreatic function are unknown. Prior studies have demonstrated that glucagon-like protein-1 (GLP-1) signaling is a crucial player in the improved insulin sensitivity after bariatric surgery. In this study, we explore the effect of massive small bowel resection on gut hormone physiology and provide novel insights into the enteropancreatic axis.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Intestinos/lesiones , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Animales , Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Insulina/sangre , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Páncreas Exocrino/metabolismo
18.
J Clin Invest ; 130(3): 1116-1121, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31821173

RESUMEN

Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.


Asunto(s)
Cardiomegalia , Gliburida/farmacología , Hipertricosis , Canales KATP , Osteocondrodisplasias , Receptores de Sulfonilureas , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Hipertricosis/tratamiento farmacológico , Hipertricosis/genética , Hipertricosis/metabolismo , Hipertricosis/patología , Canales KATP/genética , Canales KATP/metabolismo , Ratones , Ratones Transgénicos , Osteocondrodisplasias/tratamiento farmacológico , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
19.
Am J Med Genet C Semin Med Genet ; 181(4): 658-681, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31828977

RESUMEN

Cantú syndrome (CS), first described in 1982, is caused by pathogenic variants in ABCC9 and KCNJ8, which encode the regulatory and pore forming subunits of ATP-sensitive potassium (KATP ) channels, respectively. Multiple case reports of affected individuals have described the various clinical features of CS, but systematic studies are lacking. To define the effects of genetic variants on CS phenotypes and clinical outcomes, we have developed a standardized REDCap-based registry for CS. We report phenotypic features and associated genotypes on 74 CS subjects, with confirmed ABCC9 variants in 72 of the individuals. Hypertrichosis and a characteristic facial appearance are present in all individuals. Polyhydramnios during fetal life, hyperflexibility, edema, patent ductus arteriosus (PDA), cardiomegaly, dilated aortic root, vascular tortuosity of cerebral arteries, and migraine headaches are common features, although even with this large group of subjects, there is incomplete penetrance of CS-associated features, without clear correlation to genotype.


Asunto(s)
Cardiomegalia/epidemiología , Hipertricosis/epidemiología , Osteocondrodisplasias/epidemiología , Sistema de Registros , Adolescente , Adulto , Cardiomegalia/genética , Niño , Facies , Femenino , Humanos , Hipertricosis/genética , Masculino , Osteocondrodisplasias/genética , Fenotipo , Adulto Joven
20.
Nat Commun ; 10(1): 4457, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575858

RESUMEN

Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canalopatías/metabolismo , Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/metabolismo , Enfermedades Musculares/metabolismo , Mutación , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Línea Celular , Niño , Modelos Animales de Enfermedad , Facies , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Corazón , Cardiopatías/genética , Cardiopatías/metabolismo , Homocigoto , Humanos , Hipertricosis/genética , Hipertricosis/metabolismo , Discapacidad Intelectual/parasitología , Masculino , Complejo Mediador/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Enfermedades Musculares/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/fisiopatología , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Linaje , Fenotipo , Rubidio , Secuenciación Completa del Genoma , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA