RESUMEN
BACKGROUND: To investigate the association between altered sex hormone expression and long-term right ventricular (RV) adaptation and progression of right heart failure in a Dutch cohort of Pulmonary Arterial Hypertension (PAH)-patients across a wide range of ages. METHODS: In this study we included 279 PAH-patients, of which 169 females and 110 males. From 59 patients and 21 controls we collected plasma samples for sex hormone analysis. Right heart catheterization (RHC) and/or cardiac magnetic resonance (CMR) imaging was performed at baseline. For longitudinal data analysis, we selected patients that underwent a RHC and/or CMR maximally 1.5 years prior to an event (death or transplantation, N = 49). RESULTS: Dehydroepiandrosterone-sulfate (DHEA-S) levels were reduced in male and female PAH-patients compared to controls, whereas androstenedione and testosterone were only reduced in female patients. Interestingly, low DHEA-S and high testosterone levels were correlated to worse RV function in male patients only. Subsequently, we analyzed prognosis and RV adaptation in females stratified by age. Females ≤45years had best prognosis in comparison to females ≥55years and males. No differences in RV function at baseline were observed, despite higher pressure-overload in females ≤45years. Longitudinal data demonstrated a clear distinction in RV adaptation. Although females ≤45years had an event at a later time point, RV function was more impaired at end-stage disease. CONCLUSIONS: Sex hormones are differently associated with RV function in male and female PAH-patients. DHEA-S appeared to be lower in male and female PAH-patients. Females ≤45years could persevere pressure-overload for a longer time, but had a more severe RV phenotype at end-stage disease.
Asunto(s)
Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Hipertensión Pulmonar Primaria Familiar , Femenino , Hormonas Esteroides Gonadales , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Función Ventricular DerechaRESUMEN
Hypertrophic cardiomyopathy (HCM) is a complex myocardial disorder with no well-established disease-modifying therapy so far. Our study aimed to investigate how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of HCM and their contribution to the cardiac dysfunction. Demembranated cardiomyocytes from patients with HCM display increased titin-based stiffness (Fpassive), which was corrected upon antioxidant treatment. Titin as a main determinant of Fpassive was S-glutathionylated and highly ubiquitinated in HCM patients. This was associated with a shift in the balance of reduced and oxidized forms of glutathione (GSH and GSSG, respectively). Both heat shock proteins (HSP27 and α-ß crystalline) were upregulated and S-glutathionylated in HCM. Administration of HSPs in vitro significantly reduced HCM cardiomyocyte stiffness. High levels of the phosphorylated monomeric superoxide anion-generating endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO) bioavailability, decreased soluble guanylyl cyclase (sGC) activity, and high levels of 3-nitrotyrosine were observed in HCM. Many regulators of signal transduction pathways that are involved in autophagy, apoptosis, cardiac contractility, and growth including the mitogen-activated protein kinase (MAPK), protein kinase B (AKT), glycogen synthase kinase 3ß (GSK-3ß), mammalian target of rapamycin (mTOR), forkhead box O transcription factor (FOXO), c-Jun N-terminal protein kinase (JNK), and extracellular-signal-regulated kinase (ERK1/2) were modified in HCM. The apoptotic factors cathepsin, procaspase 3, procaspase 9 and caspase 12, but not caspase 9, were elevated in HCM hearts and associated with increased proinflammatory cytokines (Interleukin 6 (IL-6), interleukin 18 (IL-18), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), the Toll-like receptors 2 (TLR2) and the Toll-like receptors 4 (TLR4)) and oxidative stress (3-nitrotyrosine and hydrogen peroxide (H2O2)). Here we reveal stress signalling and impaired PQS as potential mechanisms underlying the HCM phenotype. Our data suggest that reducing oxidative stress can be a viable therapeutic approach to attenuating the severity of cardiac dysfunction in heart failure and potentially in HCM and prevent its progression.
Asunto(s)
Cardiomiopatía Hipertrófica , Peróxido de Hidrógeno , Apoptosis , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Estrés OxidativoRESUMEN
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end-stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti-hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co-factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Asunto(s)
Acetiltransferasas/metabolismo , Cardiomegalia/fisiopatología , Extensión de la Cadena Peptídica de Translación , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Miocitos Cardíacos/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
BACKGROUND: Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca(2+) sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. METHODS AND RESULTS: RV samples from PAH patients undergoing heart-lung transplantation were compared to non-failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western-blot analyses using antibodies to protein-kinase-A (PKA), Cα (PKCα) and Ca(2+)/calmoduling-dependent-kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA-, PKCα-, and CamKIIδ-mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca(2+) sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA-mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca(2+)-handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca(2+) clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). CONCLUSIONS: Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca(2+) handling proteins contribute to RV diastolic dysfunction in PAH.
Asunto(s)
Hipertensión Pulmonar/fisiopatología , Miocitos Cardíacos/química , Disfunción Ventricular Derecha/fisiopatología , Adulto , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/análisis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Estudios de Casos y Controles , Conectina/análisis , Conectina/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Femenino , Ventrículos Cardíacos/química , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Miocitos Cardíacos/fisiología , Fosforilación , Proteína Quinasa C-alfa/análisis , Proteína Quinasa C-alfa/fisiología , Troponina I/fisiologíaRESUMEN
Sarcomeric dysfunction plays a central role in reduced cardiac pump function in heart failure. This review focuses on the alterations in sarcomeric proteins in diseased myocardium that range from altered isoform expression to post-translational protein changes such as proteolysis and phosphorylation. Recent studies in animal models of heart failure and human failing myocardium converge and indicate that sarcomeric dysfunction, including altered maximum force development, Ca(2+) sensitivity, and increased passive stiffness, largely originates from altered protein phosphorylation, caused by neurohumoral-induced alterations in the kinase-phosphatase balance inside the cardiomyocytes. Novel therapies, which specifically target phosphorylation sites within sarcomeric proteins or the kinases and phosphatases involved, might improve cardiac function in heart failure.