Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Sci ; 58(17): 7398-7406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37159820

RESUMEN

Hydroborates are an emerging class of solid electrolytes for all-solid-state batteries. Here, we investigate the impact of pressure on the crystal structure and ionic conductivity of a close-hydroborate salt consisting of Na2B10H10 and Na2B12H12. Two Na2B10H10:Na2B12H12 ratios were studied, 1:1 and 1:3. The anions of the as-synthesized powder with 1:1 ratio crystallize in a single face-centered cubic phase, while the anions of the powder with 1:3 ratio crystallize in a single monoclinic phase. After applying pressure to densify the powder into a pellet, a partial phase transformation into a body-centered cubic (BCC) phase is observed for both ratios. The BCC content saturates at 50 weight percent (wt%) at 500 MPa for the 1:1 ratio and at 77 wt% at 1000 MPa for the 1:3 sample. The room temperature sodium-ion conductivity follows an analogous trend. For the 1:1 ratio, it increases from 2 × 10-4 Scm-1 at 10 wt% BCC content to about 1.0 × 10-3 Scm-1 at 50 wt% BCC content. For the 1:3 ratio, it increases from 1.3 × 10-5 Scm-1 at 11.9 wt% BCC to 8.1 × 10-4 Scm-1 at 71 wt% BCC content. Our results show that pressure is a prerequisite to achieve high sodium-ion conductivity by formation of the highly conductive BCC phase. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-08121-8.

2.
ACS Appl Mater Interfaces ; 14(35): 40257-40265, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998318

RESUMEN

Dielectric elastomers (DEs) are key materials in actuators, sensors, energy harvesters, and stretchable electronics. These devices find applications in important emerging fields such as personalized medicine, renewable energy, and soft robotics. However, even after years of research, it is still a great challenge to achieve DEs with increased dielectric permittivity and fast recovery of initial shape when subjected to mechanical and electrical stress. Additionally, high dielectric permittivity elastomers that show reliable performance but disintegrate under normal environmental conditions are not known. Here, we show that polysiloxanes modified with amide groups give elastomers with a dielectric permittivity of 21, which is 7 times higher than regular silicone rubber, a strain at break that can reach 150%, and a mechanical loss factor tan δ below 0.05 at low frequencies. Actuators constructed from these elastomers respond to a low electric field of 6.2 V µm-1, giving reliable lateral actuation of 4% for more than 30 000 cycles at 5 Hz. One survived 450 000 cycles at 10 Hz and 3.6 V µm-1. The best actuator shows 10% lateral strain at 7.5 V µm-1. Capacitive sensors offer a more than a 6-fold increase in sensitivity compared to standard silicone elastomers. The disintegrated material can be re-cross-linked when heated to elevated temperatures. In the future, our material could be used as dielectric in transient actuators, sensors, security devices, and disposable electronic patches for health monitoring.

3.
Dalton Trans ; 51(24): 9556, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35674472

RESUMEN

Correction for 'Experimental investigation of Mg(B3H8)2 dimensionality, materials for energy storage applications' by Romain Moury et al., Dalton Trans., 2020, 49, 12168-12173, https://doi.org/10.1039/D0DT02170A.

4.
Inorg Chem ; 61(13): 5224-5233, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324183

RESUMEN

In this work, we report on the structural properties of alkali hydrido-closo-(car)borates, a promising class of solid-state electrolyte materials, using high-pressure and temperature-dependent X-ray diffraction experiments combined with density functional theory (DFT) calculations. The mechanical properties are determined via pressure-dependent diffraction studies and DFT calculations; the shear moduli appear to be very low for all studied compounds, revealing their high malleability (that can be beneficial for the manufacturing and stable cycling of all-solid-state batteries). The thermodiffraction experiments also reveal a high coefficient of thermal expansion for these materials. We discover a pressure-induced phase transition for K2B12H12 from Fm3̅ to Pnnm symmetry around 2 GPa. A temperature-induced phase transition for Li2B10H10 was also observed for the first time by thermodiffraction, and the crystal structure determined by combining experimental data and DFT calculations. Interestingly, all phases of the studied compounds (including newly discovered high-pressure and high-temperature phases) may be related via a group-subgroup relationship, with the notable exception of the room-temperature phase of Li2B10H10.

5.
Chimia (Aarau) ; 76(3): 189, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069732
6.
ACS Appl Mater Interfaces ; 13(46): 55319-55328, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34757707

RESUMEN

Thermal stability of solid electrolytes and their compatibility with battery electrodes are key factors to ensure stable cycling and high operational safety of all-solid-state batteries. Here, we study the compatibility of a hydroborate solid electrolyte Na4(B12H12)(B10H10) with 3 V-class cathode active materials: NaCrO2, NaMnO2, and NaFeO2. Among these layered sodium transition metal oxide cathodes, NaCrO2 shows the highest thermal compatibility in contact with the hydroborate solid electrolyte up to 525 °C in the discharged state. Furthermore, the electrolyte remains intact upon the internal thermal decomposition of the charged, that is, desodiated, cathode (Na0.5CrO2) above 250 °C, demonstrating the potential for highly safe hydroborate-based all-solid-state batteries with a wide operating temperature range. The experimentally determined onset temperatures of thermal decomposition of Na4(B12H12)(B10H10) in contact with 3 V-class cathodes surpass those of sulfide and selenide solid electrolytes, exceeding previous thermodynamic calculations. Our results also highlight the need to identify relevant decomposition pathways of hydroborates to enable more valid theoretical predictions.

8.
Dalton Trans ; 49(35): 12168-12173, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32845954

RESUMEN

Mg(B3H8)2 is a crucial reaction intermediate in the thermal decomposition of the hydrogen storage material Mg(BH4)2 and is discussed as a potential solid-state Mg-ion conductor. We successfully synthesized unsolvated Mg(B3H8)2 and highlight that Mg(B3H8)2 exists mainly as a low-dimensional solid. In addition, the Mg2+ conductivity was evaluated to be 1.4.10-4 S cm-1 at 80 °C.

9.
ChemSusChem ; 12(21): 4832-4837, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31476102

RESUMEN

All-solid-state batteries (ASSBs) promise higher power and energy density than batteries based on liquid electrolytes. Recently, a stable 3 V ASSB based on the super ionic conductor (1 mS cm-1 near room temperature) Na4 (B12 H12 )(B10 H10 ) has demonstrated excellent cycling stability. This study concerns the development of a five-step, scalable, and solution-based synthesis of Na4 (B12 H12 )(B10 H10 ). The use of a wet chemistry approach allows solution processing with high throughput and addresses the main drawbacks for this technology, specifically, the limited electrode-electrolyte contact and high cost. Moreover, a cost-efficient synthesis of the expensive precursors Na2 B10 H10 and Na2 B12 H12 is also achieved through the same process. The mechanism of the reactions is investigated and two key parameters to tune the kinetics and selectivity are highlighted: the choice of counter cation (tetraethylammonium) and solvent.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 406-413, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830662

RESUMEN

closo-Borates, such as Na2B12H12, are an emerging class of ionic conductors that show promising chemical, electrochemical and mechanical properties as electrolytes in all-solid-state batteries. Motivated by theoretical predictions, high-pressure in situ powder X-ray diffraction on Na2B12H12 was performed and two high-pressure phases are discovered. The first phase transition occurs at 0.5 GPa and it is persistent to ambient pressure, whereas the second transition takes place between 5.7 and 8.1 GPa and it is fully reversible. The mechanisms of the transitions by means of group theoretical analysis are unveiled. The primary-order parameters are identified and the stability at ambient pressure of the first polymorph is explained by density functional theory calculations. Finally, the parameters relevant to engineer and build an all-solid-state battery, namely, the bulk modulus and the coefficient of the thermal expansion are reported. The relatively low value of the bulk modulus for the first polymorph (14 GPa) indicates a soft material which allows accommodation of the volume change of the cathode during cycling.

11.
ACS Appl Mater Interfaces ; 10(51): 44494-44500, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30489061

RESUMEN

Using an epitaxial thin-film model system deposited by pulsed laser deposition (PLD), we study the Li-ion conductivity in Li4Ti5O12, a common anode material for Li-ion batteries. Epitaxy, phase purity, and film composition across the film thickness are verified employing out-of-plane and in-plane X-ray diffraction, transmission electron microscopy, time-of-flight mass spectrometry, and elastic recoil detection analysis. We find that epitaxial Li4Ti5O12 behaves like an ideal ionic conductor that is well described by a parallel RC equivalent circuit, with an ionic conductivity of 2.5 × 10-5 S/cm at 230 °C and an activation energy of 0.79 eV in the measured temperature range of 205 to 350 °C. Differently, in a co-deposited polycrystalline Li4Ti5O12 thin film with an average in-plane grain size of <10 nm, a more complex behavior with contributions from two distinct processes is observed. Ultimately, epitaxial Li4Ti5O12 thin films can be grown by PLD and reveal suitable transport properties for further implementation as zero-strain and grain boundary free anodes in future solid-state microbattery designs.

12.
J Phys Chem Lett ; 9(22): 6450-6455, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30354146

RESUMEN

Coordination complexes of magnesium borohydride show promising properties as solid electrolytes for magnesium ion batteries and warrant a thorough microscopic description of factors governing their mobility properties. Here, the dynamics of Mg(BH4)2-diglyme0.5 on the atomic level are investigated by means of quasielastic neutron scattering supported by density functional theory calculations and IR and NMR spectroscopy. Employing deuterium labeling, we can unambiguously separate all the hydrogen-containing electrolyte components, which facilitate Mg2+ transport, and provide a detailed analytical description of their motions on the picosecond time scale. The planar diglyme chain coordinating the central Mg atom appears to be flexible, while two dynamically different groups of [BH4]- anions undergo reorientations. The latter has important implications for the thermal stability and conductivity of Mg(BH4)2-diglyme0.5 and demonstrates that the presence of excess Mg(BH4)2 units in partially chelated Mg complexes may improve the overall performance of related solid-state electrolytes.

13.
Chemistry ; 23(37): 8823-8828, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28493380

RESUMEN

A novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation, utilizing gaseous diborane, is reported. The covalently confined amine borane derivative decorated on the framework backbone is stable when preserved at low temperature, but spontaneously liberates soft chemical hydrogen at room temperature, leading to the development of an unusual borenium type species (-NH=BH2+ ) ion-paired with a hydroborate anion. Furthermore, the unsaturated amino borane (-NH=BH2 ) and the µ-iminodiborane (-µ-NHB2 H5 ) were detected as final products. A combination of DFT based molecular dynamics simulations and solid state NMR spectroscopy, utilizing isotopically enriched materials, were undertaken to unequivocally elucidate the mechanistic pathways for H2 liberation.

14.
Sci Rep ; 7: 46189, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387305

RESUMEN

Solid-state magnesium ion conductors with exceptionally high ionic conductivity at low temperatures, 5 × 10-8 Scm-1 at 30 °C and 6 × 10-5 Scm-1 at 70 °C, are prepared by mechanochemical reaction of magnesium borohydride and ethylenediamine. The coordination complexes are crystalline, support cycling in a potential window of 1.2 V, and allow magnesium plating/stripping. While the electrochemical stability, limited by the ethylenediamine ligand, must be improved to reach competitive energy densities, our results demonstrate that partially chelated Mg2+ complexes represent a promising platform for the development of an all-solid-state magnesium battery.

15.
J Phys Chem C Nanomater Interfaces ; 121(8): 4197-4205, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28286596

RESUMEN

LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li+ conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH4 confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid-solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH4 layer near the pore walls shows profoundly different phase behavior than crystalline LiBH4. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH4 with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides.

16.
J Phys Condens Matter ; 28(35): 353001, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384871

RESUMEN

With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

17.
Phys Chem Chem Phys ; 18(29): 19866-72, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27389481

RESUMEN

Using a combination of high resolution X-ray powder diffraction and X-ray Raman scattering spectroscopy at the B K- and Ca L2,3-edges, we analyzed the reaction products of Ca(BH4)2 after annealing at 350 °C and 400 °C under vacuum conditions. We observed the formation of nanocrystalline/amorphous CaB6 mainly and found only small contributions from amorphous B for annealing times larger than 2 h. For short annealing times of 0.5 h at 400 °C we observed neither CaB12H12 nor CaB6. The results indicate a reaction pathway in which Ca(BH4)2 decomposes to B and CaH2 and finally reacts to form CaB6. These findings confirm the potential of using Ca(BH4)2 as a hydrogen storage medium and imply the desired cycling capabilities for achieving high-density hydrogen storage materials.

18.
Phys Chem Chem Phys ; 18(7): 5397-403, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26818950

RESUMEN

We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.

19.
Dalton Trans ; 45(9): 3687-90, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26661567

RESUMEN

This communication presents a novel and solvent-free method to synthesise Mg(B3H8)2 via the gas-solid reaction between B2H6 and Mg2NiH4, which overcomes the limitations of wet chemical methods requiring solvent removal.

20.
Chem Commun (Camb) ; 51(55): 11008-11, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26008181

RESUMEN

We report that decomposition pathway of Ca(BH4)2 can be efficiently controlled by reaction temperature. That is, it decomposes into CaB6 at a lower temperature range of 320 to 350 °C, but into amorphous boron at 400 to 450 °C. We identified the formation of CaB2H6 as the crucial intermediate step on the way to CaB6 that only forms at 320 to 350 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...