Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37909922

RESUMEN

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Asunto(s)
Azetidinas , Inhibidores Enzimáticos , Metiltransferasas , ARNt Metiltransferasas , Humanos , Acrilamidas , Cisteína/metabolismo , Metilación , Metiltransferasas/antagonistas & inhibidores , Proteómica , ARN de Transferencia/química , ARNt Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
2.
Nat Struct Mol Biol ; 30(8): 1160-1171, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37488358

RESUMEN

Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.


Asunto(s)
Mieloma Múltiple , Neuroblastoma , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Mieloma Múltiple/genética , Regulación de la Expresión Génica , Nucleosomas , Neuroblastoma/genética , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
4.
J Am Chem Soc ; 144(40): 18688-18699, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170674

RESUMEN

Targeted protein degradation induced by heterobifunctional compounds and molecular glues presents an exciting avenue for chemical probe and drug discovery. To date, small-molecule ligands have been discovered for only a limited number of E3 ligases, which is an important limiting factor for realizing the full potential of targeted protein degradation. We report herein the discovery by chemical proteomics of azetidine acrylamides that stereoselectively and site-specifically react with a cysteine (C1113) in the E3 ligase substrate receptor DCAF1. We demonstrate that the azetidine acrylamide ligands for DCAF1 can be developed into electrophilic proteolysis-targeting chimeras (PROTACs) that mediated targeted protein degradation in human cells. We show that this process is stereoselective and does not occur in cells expressing a C1113A mutant of DCAF1. Mechanistic studies indicate that only low fractional engagement of DCAF1 is required to support protein degradation by electrophilic PROTACs. These findings, taken together, demonstrate how the chemical proteomic analysis of stereochemically defined electrophilic compound sets can uncover ligandable sites on E3 ligases that support targeted protein degradation.


Asunto(s)
Azetidinas , Quimera , Acrilamida , Cisteína/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ligandos , Proteolisis , Proteómica , Ubiquitina-Proteína Ligasas/metabolismo
5.
Sci Adv ; 8(17): eabm3108, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486727

RESUMEN

Dysregulated Wnt/ß-catenin signaling is implicated in the pathogenesis of many human cancers, including colorectal cancer (CRC), making it an attractive clinical target. With the aim of inhibiting oncogenic Wnt activity, we developed a high-throughput screening AlphaScreen assay to identify selective small-molecule inhibitors of the interaction between ß-catenin and its coactivator BCL9. We identified a compound that consistently bound to ß-catenin and specifically inhibited in vivo native ß-catenin/BCL9 complex formation in CRC cell lines. This compound inhibited Wnt activity, down-regulated expression of the Wnt/ß-catenin signature in gene expression studies, disrupted cholesterol homeostasis, and significantly reduced the proliferation of CRC cell lines and tumor growth in a xenograft mouse model of CRC. This study has therefore identified a specific small-molecule inhibitor of oncogenic Wnt signaling, which may have value as a probe for functional studies and has important implications for the development of novel therapies in patients with CRC.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Animales , Colesterol , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Homeostasis , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , beta Catenina/genética
6.
ACS Chem Biol ; 16(11): 2185-2192, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34515462

RESUMEN

Bromodomain-containing proteins frequently reside in multisubunit chromatin complexes with tissue or cell state-specific compositions. Recent studies have revealed tumor-specific dependencies on the BAF complex bromodomain subunit BRD9 that are a result of recurrent mutations afflicting the structure and composition of associated complex members. To enable the study of ligand engaged complex assemblies, we established a chemoproteomics approach using a functionalized derivative of the BRD9 ligand BI-9564 as an affinity matrix. Unexpectedly, in addition to known interactions with BRD9 and associated BAF complex proteins, we identify a previously unreported interaction with members of the NuA4 complex through the bromodomain-containing subunit BRD8. We apply this finding, alongside a homology-model-guided design, to develop chemical biology approaches for the study of BRD8 inhibition and to arrive at first-in-class selective and cellularly active probes for BRD8. These tools will empower further pharmacological studies of BRD9 and BRD8 within respective BAF and NuA4 complexes.


Asunto(s)
Bencilaminas/farmacología , Naftiridinas/farmacología , Proteómica/métodos , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Linaje de la Célula , Reparación del ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Subunidades de Proteína , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcriptoma
7.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32730809

RESUMEN

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Asunto(s)
Cisteína/metabolismo , Ligandos , Linfocitos T/metabolismo , Acetamidas/química , Acetamidas/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Células Cultivadas , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Activación de Linfocitos/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfocitos T/citología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
8.
ACS Med Chem Lett ; 10(10): 1443-1449, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31620231

RESUMEN

Recent reports have highlighted the dual bromodomains of TAF1 (TAF1(1,2)) as synergistic with BET inhibition in cellular cancer models, engendering interest in TAF/BET polypharmacology. Here, we examine structure activity relationships within the BI-2536 PLK1 kinase inhibitor scaffold, previously reported to bind BRD4. We examine binding by this ligand to TAF1(2) and apply structure guided design strategies to discriminate binding to both the PLK1 kinase and BRD4(1) bromodomain while retaining activity on TAF1(2). Through this effort we discover potent dual inhibitors of TAF1(2)/BRD4(1), as well as biased derivatives showing marked TAF1 selectivity. We resolve X-ray crystallographic data sets to examine the mechanisms of the observed TAF1 selectivity and to provide a resource for further development of this scaffold.

9.
Nat Cell Biol ; 20(12): 1410-1420, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397315

RESUMEN

Mammalian SWI/SNF chromatin remodelling complexes exist in three distinct, final-form assemblies: canonical BAF (cBAF), PBAF and a newly characterized non-canonical complex (ncBAF). However, their complex-specific targeting on chromatin, functions and roles in disease remain largely undefined. Here, we comprehensively mapped complex assemblies on chromatin and found that ncBAF complexes uniquely localize to CTCF sites and promoters. We identified ncBAF subunits as synthetic lethal targets specific to synovial sarcoma and malignant rhabdoid tumours, which both exhibit cBAF complex (SMARCB1 subunit) perturbation. Chemical and biological depletion of the ncBAF subunit, BRD9, rapidly attenuates synovial sarcoma and malignant rhabdoid tumour cell proliferation. Importantly, in cBAF-perturbed cancers, ncBAF complexes maintain gene expression at retained CTCF-promoter sites and function in a manner distinct from fusion oncoprotein-bound complexes. Together, these findings unmask the unique targeting and functional roles of ncBAF complexes and present new cancer-specific therapeutic targets.


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Tumor Rabdoide/genética , Sarcoma Sinovial/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HEK293 , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Tumor Rabdoide/metabolismo , Sarcoma Sinovial/metabolismo , Factores de Transcripción/metabolismo
10.
Elife ; 72018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30431433

RESUMEN

Synovial sarcoma tumours contain a characteristic fusion protein, SS18-SSX, which drives disease development. Targeting oncogenic fusion proteins presents an attractive therapeutic opportunity. However, SS18-SSX has proven intractable for therapeutic intervention. Using a domain-focused CRISPR screen we identified the bromodomain of BRD9 as a critical functional dependency in synovial sarcoma. BRD9 is a component of SS18-SSX containing BAF complexes in synovial sarcoma cells; and integration of BRD9 into these complexes is critical for cell growth. Moreover BRD9 and SS18-SSX co-localize extensively on the synovial sarcoma genome. Remarkably, synovial sarcoma cells are highly sensitive to a novel small molecule degrader of BRD9, while other sarcoma subtypes are unaffected. Degradation of BRD9 induces downregulation of oncogenic transcriptional programs and inhibits tumour progression in vivo. We demonstrate that BRD9 supports oncogenic mechanisms underlying the SS18-SSX fusion in synovial sarcoma and highlight targeted degradation of BRD9 as a potential therapeutic opportunity in this disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteolisis , Sarcoma Sinovial/genética , Factores de Transcripción/metabolismo , Progresión de la Enfermedad , Células HEK293 , Humanos , Unión Proteica , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcoma Sinovial/patología , Factores de Transcripción/química , Transcripción Genética
11.
Cannabis Cannabinoid Res ; 2(1): 210-216, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29082318

RESUMEN

Introduction: The roots of the cannabis plant have a long history of medical use stretching back millennia. However, the therapeutic potential of cannabis roots has been largely ignored in modern times. Discussion: In the first century, Pliny the Elder described in Natural Histories that a decoction of the root in water could be used to relieve stiffness in the joints, gout, and related conditions. By the 17th century, various herbalists were recommending cannabis root to treat inflammation, joint pain, gout, and other conditions. There has been a subsequent paucity of research in this area, with only a few studies examining the composition of cannabis root and its medical potential. Active compounds identified and measured in cannabis roots include triterpenoids, friedelin (12.8 mg/kg) and epifriedelanol (21.3 mg/kg); alkaloids, cannabisativine (2.5 mg/kg) and anhydrocannabisativine (0.3 mg/kg); carvone and dihydrocarvone; N-(p-hydroxy-ß-phenylethyl)-p-hydroxy-trans-cinnamamide (1.6 mg/kg); various sterols such as sitosterol (1.5%), campesterol (0.78%), and stigmasterol (0.56%); and other minor compounds, including choline. Of note, cannabis roots are not a significant source of Δ9-tetrahydrocannabinol (THC), cannabidiol, or other known phytocannabinoids. Conclusion: The current available data on the pharmacology of cannabis root components provide significant support to the historical and ethnobotanical claims of clinical efficacy. Certainly, this suggests the need for reexamination of whole root preparations on inflammatory and malignant conditions employing modern scientific techniques.

12.
Angew Chem Int Ed Engl ; 56(21): 5738-5743, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28418626

RESUMEN

The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9 function beyond acetyl-lysine recognition. We have therefore created the first BRD9-directed chemical degraders, through iterative design and testing of heterobifunctional ligands that bridge the BRD9 bromodomain and the cereblon E3 ubiquitin ligase complex. Degraders of BRD9 exhibit markedly enhanced potency compared to parental ligands (10- to 100-fold). Parallel study of degraders with divergent BRD9-binding chemotypes in models of acute myeloid leukemia resolves bromodomain polypharmacology in this emerging drug class. Together, these findings reveal the tractability of non-BET bromodomain containing proteins to chemical degradation, and highlight lead compound dBRD9 as a tool for the study of BRD9.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Factores de Transcripción/química , Sistemas de Liberación de Medicamentos , Humanos , Ligandos , Estructura Molecular , Pirroles/química
13.
ChemMedChem ; 11(23): 2575-2581, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27862999

RESUMEN

Evaluating the engagement of a small molecule ligand with a protein target in cells provides useful information for chemical probe optimization and pharmaceutical development. While several techniques exist that can be performed in a low-throughput manner, systematic evaluation of large compound libraries remains a challenge. In-cell engagement measurements are especially useful when evaluating compound classes suspected to target multiple cellular factors. In this study we used a bioluminescent resonant energy transfer assay to assess bromodomain engagement by a compound series containing bromodomain- and kinase-biasing polypharmacophores based on the known dual BRD4 bromodomain/PLK1 kinase inhibitor BI2536. With this assay, we discovered several novel agents with bromodomain-selective specificity profiles and cellular activity. Thus, this platform aids in distinguishing molecules whose cellular activity is difficult to assess due to polypharmacologic effects.


Asunto(s)
Proteínas Nucleares/metabolismo , Pteridinas/química , Factores de Transcripción/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Mediciones Luminiscentes , Proteínas Nucleares/antagonistas & inhibidores , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Pteridinas/metabolismo , Pteridinas/toxicidad , Factores de Transcripción/antagonistas & inhibidores , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...