Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1368290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690288

RESUMEN

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods: Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results: Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion: This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.


Asunto(s)
Interleucina-15 , Células Asesinas Naturales , Receptores de Antígenos de Linfocitos T , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-15/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Citotoxicidad Inmunológica , Proliferación Celular , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Ingeniería Genética
2.
Cancer Gene Ther ; 31(1): 58-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37945970

RESUMEN

Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Linfocitos T CD8-positivos , Epítopos , Herpesvirus Humano 4/genética , Neoplasias/terapia , Epítopos de Linfocito T
4.
Cancer Immunol Res ; 11(11): 1480-1492, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695550

RESUMEN

Cancers evade T-cell immunity by several mechanisms such as secretion of anti-inflammatory cytokines, down regulation of antigen presentation machinery, upregulation of immune checkpoint molecules, and exclusion of T cells from tumor tissues. The distribution and function of immune checkpoint molecules on tumor cells and tumor-infiltrating leukocytes is well established, but less is known about their impact on intratumoral endothelial cells. Here, we demonstrated that V-domain Ig suppressor of T-cell activation (VISTA), a PD-L1 homolog, was highly expressed on endothelial cells in synovial sarcoma, subsets of different carcinomas, and immune-privileged tissues. We created an ex vivo model of the human vasculature and demonstrated that expression of VISTA on endothelial cells selectively prevented T-cell transmigration over endothelial layers under physiologic flow conditions, whereas it does not affect migration of other immune cell types. Furthermore, endothelial VISTA correlated with reduced infiltration of T cells and poor prognosis in metastatic synovial sarcoma. In endothelial cells, we detected VISTA on the plasma membrane and in recycling endosomes, and its expression was upregulated by cancer cell-secreted factors in a VEGF-A-dependent manner. Our study reveals that endothelial VISTA is upregulated by cancer-secreted factors and that it regulates T-cell accessibility to cancer and healthy tissues. This newly identified mechanism should be considered when using immunotherapeutic approaches aimed at unleashing T cell-mediated cancer immunity.


Asunto(s)
Antígenos B7 , Sarcoma Sinovial , Humanos , Células Endoteliales/metabolismo , Endotelio/metabolismo , Proteínas de Punto de Control Inmunitario , Linfocitos T
6.
Front Immunol ; 14: 1121973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026005

RESUMEN

Recurrent disease emerges in the majority of patients with ovarian cancer (OVCA). Adoptive T-cell therapies with T-cell receptors (TCRs) targeting tumor-associated antigens (TAAs) are considered promising solutions for less-immunogenic 'cold' ovarian tumors. In order to treat a broader patient population, more TCRs targeting peptides derived from different TAAs binding in various HLA class I molecules are essential. By performing a differential gene expression analysis using mRNA-seq datasets, PRAME, CTCFL and CLDN6 were selected as strictly tumor-specific TAAs, with high expression in ovarian cancer and at least 20-fold lower expression in all healthy tissues of risk. In primary OVCA patient samples and cell lines we confirmed expression and identified naturally expressed TAA-derived peptides in the HLA class I ligandome. Subsequently, high-avidity T-cell clones recognizing these peptides were isolated from the allo-HLA T-cell repertoire of healthy individuals. Three PRAME TCRs and one CTCFL TCR of the most promising T-cell clones were sequenced, and transferred to CD8+ T cells. The PRAME TCR-T cells demonstrated potent and specific antitumor reactivity in vitro and in vivo. The CTCFL TCR-T cells efficiently recognized primary patient-derived OVCA cells, and OVCA cell lines treated with demethylating agent 5-aza-2'-deoxycytidine (DAC). The identified PRAME and CTCFL TCRs are promising candidates for the treatment of patients with ovarian cancer, and are an essential addition to the currently used HLA-A*02:01 restricted PRAME TCRs. Our selection of differentially expressed genes, naturally expressed TAA peptides and potent TCRs can improve and broaden the use of T-cell therapies for patients with ovarian cancer or other PRAME or CTCFL expressing cancers.


Asunto(s)
Neoplasias Ováricas , Receptores de Antígenos de Linfocitos T , Humanos , Femenino , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Neoplasias Ováricas/terapia , Neoplasias Ováricas/metabolismo , Péptidos/metabolismo , Proteínas de Unión al ADN/metabolismo
7.
Mol Ther Methods Clin Dev ; 28: 249-261, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36816758

RESUMEN

The balance between safety and efficacy of T cell therapies remains challenging and T cell mediated toxicities have occurred. The stringent selection of tumor-specific targets and careful selection of tumor-specific T cells using T cell toxicity screenings are essential. In vitro screening options against vital organs or specialized cell subsets would be preferably included in preclinical pipelines, but options remain limited. Here, we set up preclinical models with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, epicardial cells, and kidney organoids to investigate toxicity risks of tumor-specific T cells more thoroughly. CD8+T cells reactive against PRAME, HA-1H, CD20, or WT1, currently used or planned to be used in phase I/II clinical studies, were included. Using these hiPSC-derived preclinical models, we demonstrated that WT1-specific T cells caused on-target toxicity that correlated with target gene expression. Multiple measures of T cell reactivity demonstrated this toxicity on the level of T cells and hiPSC-derived target cells. In addition, phenotypic analysis illustrated interaction and crosstalk between infiltrated T cells and kidney organoids. In summary, we demonstrated the benefit of hiPSC-derived models in determining toxicity risks of tumor-specific T cells. Furthermore, our data emphasizes the additional value of other measures of T cell reactivity on top of the commonly used cytokine levels.

8.
J Hematol Oncol ; 16(1): 16, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36850001

RESUMEN

BACKGROUND: The immunoglobulin J chain (Jchain) is highly expressed in the majority of multiple myeloma (MM), and Jchain-derived peptides presented in HLA molecules may be suitable antigens for T-cell therapy of MM. METHODS: Using immunopeptidomics, we identified Jchain-derived epitopes presented by MM cells, and pHLA tetramer technology was used to isolate Jchain-specific T-cell clones. RESULTS: We identified T cells specific for Jchain peptides presented in HLA-A1, -A24, -A3, and -A11 that recognized and lysed JCHAIN-positive MM cells. TCRs of the most promising T-cell clones were sequenced, cloned into retroviral vectors, and transferred to CD8 T cells. Jchain TCR T cells recognized target cells when JCHAIN and the appropriate HLA restriction alleles were expressed, while JCHAIN or HLA-negative cells, including healthy subsets, were not recognized. Patient-derived JCHAIN-positive MM samples were also lysed by Jchain TCR T cells. In a preclinical in vivo model for established MM, Jchain-A1, -A24, -A3, and -A11 TCR T cells strongly eradicated MM cells, which resulted in 100-fold lower tumor burden in Jchain TCR versus control-treated mice. CONCLUSIONS: We identified TCRs targeting Jchain-derived peptides presented in four common HLA alleles. All four TCRs demonstrated potent preclinical anti-myeloma activity, encouraging further preclinical testing and ultimately clinical development.


Asunto(s)
Cadenas J de Inmunoglobulina , Mieloma Múltiple , Animales , Ratones , Mieloma Múltiple/terapia , Receptores de Antígenos de Linfocitos T/genética , Alelos , Linfocitos T CD8-positivos
9.
Leukemia ; 37(4): 864-876, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36792656

RESUMEN

Combination therapies targeting malignancies aim to increase treatment efficacy and reduce toxicity. Hypomethylating drug 5-Aza-2'-deoxycytidine (5-Aza-2') enhances transcription of tumor suppressor genes and induces replication errors via entrapment of DNMT1, yielding DNA-protein crosslinks. Post-translational modification by SUMO plays major roles in the DNA damage response and is required for degradation of entrapped DNMT1. Here, we combine SUMOylation inhibitor TAK981 and DNA-hypomethylating agent 5-Aza-2'-deoxycytidine to improve treatment of MYC driven hematopoietic malignancies, since MYC overexpressing tumors are sensitive to SUMOylation inhibition. We studied the classical MYC driven malignancy Burkitt lymphoma, as well as diffuse large B-cell lymphoma (DLBCL) with and without MYC translocation. SUMO inhibition prolonged the entrapment of DNMT1 to DNA, resulting in DNA damage. An increase in DNA damage was observed in cells co-treated with TAK981 and 5-Aza-2'. Both drugs synergized to reduce cell proliferation in vitro in a B cell lymphoma cell panel, including Burkitt lymphoma and DLBCL. In vivo experiments combining TAK981 (25 mg/kg) and 5-Aza-2' (2.5 mg/kg) showed a significant reduction in outgrowth of Burkitt lymphoma in an orthotopic xenograft model. Our results demonstrate the potential of tailored combination of drugs, based on insight in molecular mechanisms, to improve the efficacy of cancer therapies.


Asunto(s)
Linfoma de Burkitt , Neoplasias Hematológicas , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Decitabina/farmacología , Sumoilación , Azacitidina/farmacología , Azacitidina/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , ADN/metabolismo , Línea Celular Tumoral
10.
Mol Ther Oncolytics ; 28: 1-14, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36589698

RESUMEN

To increase the number of cancer patients that can be treated with T cell receptor (TCR) gene therapy, we aimed to identify a set of high-affinity cancer-specific TCRs targeting different melanoma-associated antigens (MAGEs). In this study, peptides derived from MAGE genes with tumor-specific expression pattern were identified by human leukocyte antigen (HLA) peptidomics. Next, peptide-HLA tetramers were generated, and used to sort MAGE-specific CD8+ T cell clones from the allogeneic (allo) HLA repertoire of healthy donors. To evaluate the clinical potential, most potent TCRs were sequenced, transferred into peripheral blood-derived CD8+ T cells, and tested for antitumor efficacy. In total we identified, seven MAGE-specific TCRs that effectively target MAGE-A1, MAGE-A3, MAGE-A6, and MAGE-A9 in the context of HLA-A∗01:01, -A∗02:01, -A∗03:01, -B∗07:02, -B∗35:01, or -C∗07:02. TCR gene transfer into CD8⁺ T cells resulted in efficient reactivity against a variety of different tumor types, while no cross-reactivity was detected. In addition, major in vivo antitumor effects of MAGE-A1 specific TCR engineered CD8⁺ T cells were observed in the orthotopic xenograft model for established multiple myeloma. The identification of seven MAGE-specific TCRs expands the pool of cancer patients eligible for TCR gene therapy and increases possibilities for personalized TCR gene therapy.

11.
J Immunother Cancer ; 10(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35728869

RESUMEN

BACKGROUND: Transcription factor Wilms' tumor gene 1 (WT1) is an ideal tumor target based on its expression in a wide range of tumors, low-level expression in normal tissues and promoting role in cancer progression. In clinical trials, WT1 is targeted using peptide-based or dendritic cell-based vaccines and T-cell receptor (TCR)-based therapies. Antitumor reactivities were reported, but T-cell reactivity is hampered by self-tolerance to WT1 and limited number of WT1 peptides, which were thus far selected based on HLA peptide binding algorithms. METHODS: In this study, we have overcome both limitations by searching in the allogeneic T-cell repertoire of healthy donors for high-avidity WT1-specific T cells, specific for WT1 peptides derived from the HLA class I associated ligandome of primary leukemia and ovarian carcinoma samples. RESULTS: Using broad panels of malignant cells and healthy cell subsets, T-cell clones were selected that demonstrated potent and specific anti-WT1 T-cell reactivity against five of the eight newly identified WT1 peptides. Notably, T-cell clones for WT1 peptides previously used in clinical trials lacked reactivity against tumor cells, suggesting limited processing and presentation of these peptides. The TCR sequences of four T-cell clones were analyzed and TCR gene transfer into CD8+ T cells installed antitumor reactivity against WT1-expressing solid tumor cell lines, primary acute myeloid leukemia (AML) blasts, and ovarian carcinoma patient samples. CONCLUSIONS: Our approach resulted in a set of naturally expressed WT1 peptides and four TCRs that are promising candidates for TCR gene transfer strategies in patients with WT1-expressing tumors, including AML and ovarian carcinoma.


Asunto(s)
Leucemia Mieloide Aguda , Neoplasias Ováricas , Receptores de Antígenos de Linfocitos T , Proteínas WT1 , Linfocitos T CD8-positivos/inmunología , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/terapia , Femenino , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Péptidos/inmunología , Péptidos/farmacología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas WT1/inmunología
12.
J Immunol ; 208(8): 1851-1856, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35379743

RESUMEN

Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.


Asunto(s)
Linfocitos T CD8-positivos , Epítopos de Linfocito T , Antígeno HLA-A2 , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Genes MHC Clase I/genética , Genes MHC Clase I/inmunología , Antígenos HLA-A/genética , Antígenos HLA-A/inmunología , Antígeno HLA-A2/genética , Antígeno HLA-A2/inmunología , Humanos , Péptidos/genética , Péptidos/inmunología
13.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35288464

RESUMEN

BACKGROUND: T cell receptor (TCR)-engineered cells can be powerful tools in the treatment of malignancies. However, tumor resistance by Human Leukocyte antigen (HLA) class I downregulation can negatively impact the success of any TCR-mediated cell therapy. Allogeneic natural killer (NK) cells have demonstrated efficacy and safety against malignancies without inducing graft-versus-host-disease, highlighting the feasibility for an 'off the shelf' cellular therapeutic. Furthermore, primary NK cells can target tumors using a broad array of intrinsic activation mechanisms. In this study, we combined the antitumor effector functions of NK cells with TCR engineering (NK-TCR), creating a novel therapeutic strategy to avoid TCR-associated immune resistance. METHODS: BOB1, is a transcription factor highly expressed in all healthy and malignant B cell lineages, including multiple myeloma (MM). Expression of an HLA-B*07:02 restricted BOB1-specifc TCR in peripheral blood-derived NK cells was achieved following a two-step retroviral transduction protocol. NK-TCR was then compared with TCR-negative NK cells and CD8-T cells expressing the same TCR for effector function against HLA-B*07:02+ B-cell derived lymphoblastoid cell lines (B-LCL), B-cell acute lymphoblastic leukemia and MM cell lines in vitro and in vivo. RESULTS: Firstly, TCR could be reproducibly expressed in NK cells isolated from the peripheral blood of multiple healthy donors generating pure NK-TCR cell products. Secondly, NK-TCR demonstrated antigen-specific effector functions against malignancies which were previously resistant to NK-mediated lysis and enhanced NK efficacy in vivo using a preclinical xenograft model of MM. Moreover, antigen-specific cytotoxicity and cytokine production of NK-TCR was comparable to CD8 T cells expressing the same TCR. Finally, in a model of HLA-class I loss, tumor cells with B2M KO were lysed by NK-TCR in an NK-mediated manner but were resistant to T-cell based killing. CONCLUSION: NK-TCR cell therapy enhances NK cell efficacy against tumors through additional TCR-mediated lysis. Furthermore, the dual efficacy of NK-TCR permits the specific targeting of tumors and the associated TCR-associated immune resistance, making NK-TCR a unique cellular therapeutic.


Asunto(s)
Mieloma Múltiple , Escape del Tumor , Antígenos de Histocompatibilidad Clase I , Humanos , Células Asesinas Naturales , Receptores de Antígenos de Linfocitos T/genética
14.
Oncoimmunology ; 11(1): 2033528, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127255

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have resulted in profound clinical responses in the treatment of CD19-positive hematological malignancies, but a significant proportion of patients do not respond or relapse eventually. As an alternative to CAR T cells, T cells can be engineered to express a tumor-targeting T cell receptor (TCR). Due to HLA restriction of TCRs, CARs have emerged as a preferred treatment moiety when targeting surface antigens, despite the fact that functional differences between engineered TCR (eTCR) T and CAR T cells remain ill-defined. Here, we compared the activity of CAR T cells versus engineered TCR T cells in targeting the B cell malignancy-associated antigen CD20 as a function of antigen exposure. We found CAR T cells to be more potent effector cells, producing higher levels of cytokines and killing more efficiently than eTCR T cells in a short time frame. However, we revealed that the increase of antigen exposure significantly impaired CAR T cell expansion, a phenotype defined by high expression of coinhibitory molecules and effector differentiation. In contrast, eTCR T cells expanded better than CAR T cells under high antigenic pressure, with lower expression of coinhibitory molecules and maintenance of an early differentiation phenotype, and comparable clearance of tumor cells.


Asunto(s)
Recurrencia Local de Neoplasia , Linfocitos T , Antígenos CD20/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética
15.
Mol Ther ; 30(2): 564-578, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34371177

RESUMEN

CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Linfocitos T CD8-positivos , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo
16.
Cancers (Basel) ; 13(21)2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34771556

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.

17.
Mol Ther ; 28(1): 64-74, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31636040

RESUMEN

Generation of an optimal T cell therapeutic expressing high frequencies of transgenic T cell receptor (tgTCR) is essential for improving TCR gene therapy. Upon TCR gene transfer, presence of endogenous TCRαß reduces expression of tgTCR due to TCR mixed-dimer formation and competition for binding CD3. Knockout (KO) of endogenous TCRαß was recently achieved using CRISPR/Cas9 editing of the TRAC or TRBC loci, resulting in increased expression and function of tgTCR. Here, we adopt this approach into current protocols for generating T cell populations expressing tgTCR to validate this strategy in the context of four clinically relevant TCRs. First, simultaneous editing of TRAC and TRBC loci was reproducible and resulted in high double KO efficiencies in bulk CD8 T cells. Next, tgTCR expression was significantly higher in double TRAC/BC KO conditions for all TCRs tested, including those that contained structural modifications to encourage preferential pairing. Finally, increased expression of tgTCR in edited T cell populations allowed for increased recognition of antigen expressing tumor targets and prolonged control of tumor outgrowth in a preclinical model of multiple myeloma. In conclusion, CRISPR/Cas9-mediated KO of both endogenous TCRαß chains can be incorporated in current T cell production protocols and is preferential to ensure an improved and safe clinical therapeutic.


Asunto(s)
Traslado Adoptivo/métodos , Sistemas CRISPR-Cas , Edición Génica/métodos , Terapia Genética/métodos , Mieloma Múltiple/terapia , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Traslado Adoptivo/efectos adversos , Animales , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos , Femenino , Genes Codificadores de los Receptores de Linfocitos T , Terapia Genética/efectos adversos , Voluntarios Sanos , Humanos , Células K562 , Masculino , Ratones , Ratones Endogámicos NOD , Mieloma Múltiple/patología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Transducción Genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Rheumatology (Oxford) ; 54(11): 1954-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26175472

RESUMEN

Synovial fibrosis is often found in OA, contributing heavily to joint pain and joint stiffness, the main symptoms of OA. At this moment the underlying mechanism of OA-related synovial fibrosis is not known and there is no cure available. In this review we discuss factors that have been reported to be involved in synovial fibrosis. The aim of the study was to gain insight into how these factors contribute to the fibrotic process and to determine the best targets for therapy in synovial fibrosis. In this regard, the following factors are discussed: TGF-ß, connective tissue growth factor, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, tissue inhibitor of metalloproteinase 1, A disintegrin and metalloproteinase domain 12, urotensin-II, prostaglandin F2α and hyaluronan.


Asunto(s)
Articulaciones/fisiopatología , Osteoartritis/fisiopatología , Rango del Movimiento Articular/fisiología , Membrana Sinovial/fisiopatología , Factor de Crecimiento del Tejido Conjuntivo/fisiología , Fibrosis/etiología , Fibrosis/fisiopatología , Humanos , Osteoartritis/complicaciones , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/fisiología , Transducción de Señal/fisiología , Membrana Sinovial/patología , Factor de Crecimiento Transformador beta/fisiología
19.
Cell Tissue Res ; 355(1): 163-71, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24192939

RESUMEN

Lysyl hydroxylase 2b (LH2b) is known to increase pyridinoline cross-links, making collagen less susceptible to enzymatic degradation. Previously, we observed a relationship between LH2b and osteoarthritis-related fibrosis in murine knee joint. For this study, we investigate if transforming growth factor-beta (TGF-ß) and connective tissue growth factor (CTGF) regulate procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) (gene encoding LH2b) and LH2b expression differently in osteoarthritic human synovial fibroblasts (hSF). Furthermore, we investigate via which TGF-ß route (Smad2/3P or Smad1/5/8P) LH2b is regulated, to explore options to inhibit LH2b during fibrosis. To answer these questions, fibroblasts were isolated from knee joints of osteoarthritis patients. The hSF were stimulated with TGF-ß with or without a kinase inhibitor of ALK4/5/7 (SB-505124) or ALK1/2/3/6 (dorsomorphin). TGF-ß, CTGF, constitutively active (ca)ALK1 and caALK5 were adenovirally overexpressed in hSF. The gene expression levels of PLOD1/2/3, CTGF and COL1A1 were analyzed with Q-PCR. LH2 protein levels were determined with western blot. As expected, TGF-ß induced PLOD2/LH2 expression in hSF, whereas CTGF did not. PLOD1 and PLOD3 were not affected by either TGF-ß or CTGF. SB-505124 prevented the induction of TGF-ß-induced PLOD2, CTGF and COL1A1. Surprisingly, dorsomorphin completely blocked the induction of CTGF and COL1A1, whereas TGF-ß-induced PLOD2 was only slightly reduced. Overexpression of caALK5 in osteoarthritic hSF significantly induced PLOD2/LH2 expression, whereas caALK1 had no effect. We showed, in osteoarthritic hSF, that TGF-ß induced PLOD2/LH2 via ALK5 Smad2/3P. This elevation of LH2b in osteoarthritic hSF makes LH2b an interesting target to interfere with osteoarthritis-related persistent fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Osteoartritis/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Cultivadas , Fibroblastos/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Regulación de la Expresión Génica , Humanos , Osteoartritis/genética , Osteoartritis/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo
20.
J Immunol ; 182(12): 7937-45, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19494318

RESUMEN

During osteoarthritis (OA) chondrocytes show deviant behavior resembling terminal differentiation of growth-plate chondrocytes, characterized by elevated MMP-13 expression. The latter is also a hallmark for OA. TGF-beta is generally thought to be a protective factor for cartilage, but it has also displayed deleterious effects in some studies. Recently, it was shown that besides signaling via the ALK5 (activin-like kinase 5) receptor, TGF-beta can also signal via ALK1, thereby activating Smad1/5/8 instead of Smad2/3. The Smad1/5/8 route can induce chondrocyte terminal differentiation. Murine chondrocytes stimulated with TGF-beta activated the ALK5 receptor/Smad2/3 route as well as the ALK1/Smad1/5/8 route. In cartilage of mouse models for aging and OA, ALK5 expression decreased much more than ALK1. Thus, the ALK1/ALK5 ratio increased, which was associated with changes in the respective downstream markers: an increased Id-1 (inhibitor of DNA binding-1)/PAI-1 (plasminogen activator inhibitor-1) ratio. Transfection of chondrocytes with adenovirus overexpressing constitutive active ALK1 increased MMP-13 expression, while small interfering RNA against ALK1 decreased MMP-13 expression to nondetectable levels. Adenovirus overexpressing constitutive active ALK5 transfection increased aggrecan expression, whereas small interfering RNA against ALK5 resulted in increased MMP-13 expression. Moreover, in human OA cartilage ALK1 was highly correlated with MMP-13 expression, whereas ALK5 correlated with aggrecan and collagen type II expression, important for healthy cartilage. Collectively, we show an age-related shift in ALK1/ALK5 ratio in murine cartilage and a strong correlation between ALK1 and MMP-13 expression in human cartilage. A change in balance between ALK5 and ALK1 receptors in chondrocytes caused changes in MMP-13 expression, thereby causing an OA-like phenotype. Our data suggest that dominant ALK1 signaling results in deviant chondrocyte behavior, thereby contributing to age-related cartilage destruction and OA.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo I/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Osteoartritis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II/genética , Envejecimiento/fisiología , Animales , Cartílago/enzimología , Células Cultivadas , Condrocitos/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Masculino , Metaloproteinasa 13 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Osteoartritis/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Mensajero/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA