Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(22): 12945-12953, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29165709

RESUMEN

Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and are promising targets for antifungal drug discovery because their domain compositions and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. A distinctive feature of Trl1 is its preferential use of GTP as phosphate donor for the RNA kinase reaction. Here we report the 2.2 Å crystal structure of the kinase domain of Trl1 from the fungal pathogen Candida albicans with GDP and Mg2+ in the active site. The P-loop phosphotransferase fold of the kinase is embellished by a unique 'G-loop' element that accounts for guanine nucleotide specificity. Mutations of amino acids that contact the guanine nucleobase efface kinase activity in vitro and Trl1 function in vivo. Our findings fortify the case for the Trl1 kinase as an antifungal target.


Asunto(s)
Dominio Catalítico , Proteínas Fúngicas/metabolismo , Guanosina Trifosfato/metabolismo , ARN Ligasa (ATP)/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Candida albicans/enzimología , Candida albicans/genética , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Guanosina Trifosfato/química , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , ARN/genética , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
2.
RNA ; 22(10): 1500-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27492257

RESUMEN

Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3'-OH, 2'-PO4, and 5'-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and they are promising targets for antifungal drug discovery because: (i) their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme; and (ii) there are no obvious homologs of the Trl1 ligase domain in mammalian proteomes. Here we characterize the tRNA ligases of two human fungal pathogens: Coccidioides immitis and Aspergillus fumigatus The biological activity of CimTrl1 and AfuTrl1 was verified by showing that their expression complements a Saccharomyces cerevisiae trl1Δ mutant. Purified recombinant AfuTrl1 and CimTrl1 proteins were catalytically active in joining 2',3'-cyclic-PO4 and 5'-OH ends in vitro, either as full-length proteins or as a mixture of separately produced healing and sealing domains. The biochemical properties of CimTrl1 and AfuTrl1 are similar to those of budding yeast Trl1, particularly with respect to their preferential use of GTP as the phosphate donor for the polynucleotide kinase reaction. Our findings provide genetic and biochemical tools to screen for inhibitors of tRNA ligases from pathogenic fungi.


Asunto(s)
Aspergillus fumigatus/enzimología , Coccidioides/enzimología , Proteínas Fúngicas/metabolismo , ARN Ligasa (ATP)/metabolismo , Aspergillus fumigatus/genética , Coccidioides/genética , Proteínas Fúngicas/genética , Guanosina Trifosfato/metabolismo , ARN Ligasa (ATP)/genética , Empalme del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
RNA ; 20(11): 1697-705, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239919

RESUMEN

2H (two-histidine) phosphoesterase enzymes are distributed widely in all domains of life and are implicated in diverse RNA and nucleotide transactions, including the transesterification and hydrolysis of cyclic phosphates. Here we report a biochemical and structural characterization of the Escherichia coli 2H protein YapD YadP [corrected], which was identified originally as a reversible transesterifying "nuclease/ligase" at RNA 2',5'-phosphodiesters. We find that YapD YadP [corrected] is an "end healing" cyclic phosphodiesterase (CPDase) enzyme that hydrolyzes an HORNA>p substrate with a 2',3'-cyclic phosphodiester to a HORNAp product with a 2'-phosphomonoester terminus, without concomitant end joining. Thus we rename this enzyme ThpR (two-histidine 2',3'-cyclic phosphodiesterase acting on RNA). The 2.0 Å crystal structure of ThpR in a product complex with 2'-AMP highlights the roles of extended histidine-containing motifs (43)HxTxxF(48) and (125)HxTxxR(130) in the CPDase reaction. His43-Nε makes a hydrogen bond with the ribose O3' leaving group, thereby implicating His43 as a general acid catalyst. His125-Nε coordinates the O1P oxygen of the AMP 2'-phosphate (inferred from geometry to derive from the attacking water nucleophile), pointing to His125 as a general base catalyst. Arg130 makes bidentate contact with the AMP 2'-phosphate, suggesting a role in transition-state stabilization. Consistent with these inferences, changing His43, His125, or Arg130 to alanine effaced the CPDase activity of ThpR. Phe48 makes a π-π stack on the adenine nucleobase. Mutating Phe28 to alanine slowed the CPDase by an order of magnitude. The tertiary structure and extended active site motifs of ThpR are conserved in a subfamily of bacterial and archaeal 2H enzymes.


Asunto(s)
Escherichia coli/enzimología , Nucleotidasas/química , Nucleotidasas/metabolismo , Adenosina Monofosfato/metabolismo , Alanina/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagénesis , Filogenia , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
4.
RNA ; 20(4): 462-73, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24554441

RESUMEN

Plant and fungal tRNA ligases are trifunctional enzymes that repair RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends. They are composed of cyclic phosphodiesterase (CPDase) and polynucleotide kinase domains that heal the broken ends to generate the 3'-OH, 2'-PO4, and 5'-PO4 required for sealing by a ligase domain. Here, we use short HORNA>p substrates to determine, in a one-pot assay format under single-turnover conditions, the order and rates of the CPDase, kinase and ligase steps. The observed reaction sequence for the plant tRNA ligase AtRNL, independent of RNA length, is that the CPDase engages first, converting HORNA>p to HORNA2'p, which is then phosphorylated to pRNA2'p by the kinase. Whereas the rates of the AtRNL CPDase and kinase reactions are insensitive to RNA length, the rate of the ligase reaction is slowed by a factor of 16 in the transition from 10-mer RNA to 8-mer and further by eightfold in the transition from 8-mer RNA to 6-mer. We report that a single ribonucleoside-2',3'-cyclic-PO4 moiety enables AtRNL to efficiently splice an otherwise all-DNA strand. Our characterization of a fungal tRNA ligase (KlaTrl1) highlights important functional distinctions vis à vis the plant homolog. We find that (1) the KlaTrl1 kinase is 300-fold faster than the AtRNL kinase; and (2) the KlaTrl1 kinase is highly specific for GTP or dGTP as the phosphate donor. Our findings recommend tRNA ligase as a tool to map ribonucleotides embedded in DNA and as a target for antifungal drug discovery.


Asunto(s)
Arabidopsis/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , ARN Ligasa (ATP)/metabolismo , ARN/genética , Saccharomyces cerevisiae/enzimología , Arabidopsis/genética , Cinética , Kluyveromyces/enzimología , Kluyveromyces/genética , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , ARN/química , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/aislamiento & purificación , Empalme del ARN/genética , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 110(51): 20437-42, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24218597

RESUMEN

There are many biological contexts in which DNA damage generates "dirty" breaks with 3'-PO4 (or cyclic-PO4) and 5'-OH ends that cannot be sealed by DNA ligases. Here we show that the Escherichia coli RNA ligase RtcB can splice these dirty DNA ends via a unique chemical mechanism. RtcB transfers GMP from a covalent RtcB-GMP intermediate to a DNA 3'-PO4 to form a "capped" 3' end structure, DNA3'pp5'G. When a suitable DNA 5'-OH end is available, RtcB catalyzes attack of the 5'-OH on DNA3'pp5'G to form a 3'-5' phosphodiester splice junction. Our findings unveil an enzymatic capacity for DNA 3' capping and the sealing of DNA breaks with 3'-PO4 and 5'-OH termini, with implications for DNA repair and DNA rearrangements.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Roturas del ADN , Reparación del ADN/fisiología , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética
6.
RNA ; 19(5): 659-69, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23515942

RESUMEN

tRNA ligases are essential components of informational and stress-response pathways entailing repair of RNA breaks with 2',3'-cyclic phosphate and 5'-OH ends. Plant and fungal tRNA ligases comprise three catalytic domains. Phosphodiesterase and kinase modules heal the broken ends to generate the 3'-OH, 2'-PO4, and 5'-PO4 required for sealing by the ligase. We exploit RNA substrates with different termini to define rates of individual steps or subsets of steps along the repair pathway of plant ligase AtRNL. The results highlight rate-limiting transactions, how repair is affected by active-site mutations, and how mutations are bypassed by RNA alterations. We gain insights to 2'-PO4 specificity by showing that AtRNL is deficient in transferring AMP to pRNAOH to form AppRNAOH but proficient at sealing pre-adenylylated AppRNAOH. This strategy for discriminating 2'-PO4 versus 2'-OH ends provides a quality-control checkpoint to ensure that only purposeful RNA breaks are sealed and to avoid nonspecific "capping" of 5'-PO4 ends.


Asunto(s)
ARN Ligasa (ATP) , ARN de Transferencia/genética , ARN/genética , Saccharomyces cerevisiae , Cinética , Fosfatos/química , Hidrolasas Diéster Fosfóricas/metabolismo , Estructura Terciaria de Proteína , ARN/química , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Empalme del ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...