Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ultrasound Med Biol ; 49(10): 2234-2246, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544831

RESUMEN

OBJECTIVE: Plane-wave imaging (PWI) is a high-frame-rate imaging technique that sacrifices image quality. Deep learning can potentially enhance plane-wave image quality, but processing complex in-phase and quadrature (IQ) data and suppressing incoherent signals pose challenges. To address these challenges, we present a complex transformer network (CTN) that integrates complex convolution and complex self-attention (CSA) modules. METHODS: The CTN operates in a four-step process: delaying complex IQ data from a 0° single-angle plane wave for each pixel as CTN input data; extracting reconstruction features with a complex convolution layer; suppressing irrelevant features derived from incoherent signals with two CSA modules; and forming output images with another complex convolution layer. The training labels are generated by minimum variance (MV). RESULTS: Simulation, phantom and in vivo experiments revealed that CTN produced comparable- or even higher-quality images than MV, but with much shorter computation time. Evaluation metrics included contrast ratio, contrast-to-noise ratio, generalized contrast-to-noise ratio and lateral and axial full width at half-maximum and were -11.59 dB, 1.16, 0.68, 278 µm and 329 µm for simulation, respectively, and 9.87 dB, 0.96, 0.62, 357 µm and 305 µm for the phantom experiment, respectively. In vivo experiments further indicated that CTN could significantly improve details that were previously vague or even invisible in DAS and MV images. And after being accelerated by GPU, the CTN runtime (76.03 ms) was comparable to that of delay-and-sum (DAS, 61.24 ms). CONCLUSION: The proposed CTN significantly improved the image contrast, resolution and some unclear details by the MV beamformer, making it an efficient tool for high-frame-rate imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microburbujas , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos , Fantasmas de Imagen , Simulación por Computador , Algoritmos
2.
Ultrasound Med Biol ; 48(10): 2079-2094, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35922265

RESUMEN

Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Algoritmos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA