Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Calcif Tissue Int ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030433

RESUMEN

Renin-angiotensin-aldosterone system plays a crucial role in the regulation of blood pressure and fluid homeostasis. It is reported to be involved in mediating osteoclastogenesis and bone loss in diseases of inflammatory bone resorption such as osteoporosis. Angiotensin-(1-7), a product of Angiotensin I and II (Ang I, II), is cleaved by Angiotensin-converting enzyme 2 and then binds to Mas receptor to counteract inflammatory effects produced by Ang II. However, the mechanism by which Ang-(1-7) reduces bone resorption remains unclear. Therefore, we aim to elucidate the effects of Ang-(1-7) on lipopolysaccharide (LPS)-induced osteoclastogenesis. In vivo, mice were supracalvarial injected with Ang-(1-7) or LPS ± Ang-(1-7) subcutaneously. Bone resorption and osteoclast formation were compared using micro-computed tomography, tartrate-resistant acid phosphatase (TRAP) stain, and real-time PCR. We found that Ang-(1-7) attenuated tumor necrosis factor (TNF)-α, TRAP, and Cathepsin K expression from calvaria and decreased osteoclast number along with bone resorption at the suture mesenchyme. In vitro, RANKL/TNF-α ± Ang-(1-7) was added to cultures of bone marrow-derived macrophages (BMMs) and osteoclast formation was measured via TRAP staining. The effect of Ang-(1-7) on LPS-induced osteoblasts RANKL expression and peritoneal macrophages TNF-α expression was also investigated. The effect of Ang-(1-7) on the MAPK and NF-κB pathway was studied by Western blotting. As a result, Ang-(1-7) reduced LPS-stimulated macrophages TNF-α expression and inhibited the MAPK and NF-κB pathway activation. However, Ang-(1-7) did not affect osteoclastogenesis induced by RANKL/TNF-α nor reduce osteoblasts RANKL expression in vitro. In conclusion, Ang-(1-7) alleviated LPS-induced osteoclastogenesis and bone resorption in vivo via inhibiting TNF-α expression in macrophages.

2.
Infect Dis Poverty ; 13(1): 51, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970140

RESUMEN

BACKGROUND: Given the critical importance of medication adherence in HIV/AIDS treatment, this study aims to compare medication adherence measured by self-report (SR) and indirect measurement among antiretroviral therapy (ART) patients, exploring the differences of adherence results measured by different tools. METHODS: We systematically searched PubMed, Embase, and the Cochrane Library to identify all relevant literature published up to November 22, 2023, without language restrictions, reporting adherence to ART measured by both SR and indirect measurement methods, while also analyzing individual and group adherence separately. Discrepancies between SR and indirect measurement results were assessed using the Mann-Whitney U test or Wilcoxon signed-rank test, with correlations evaluated using the Pearson correlation coefficient. Following one-to-one comparisons, meta-epidemiological one-step analysis was conducted, and network meta-analysis techniques were applied to compare results obtained through specific adherence assessment tools reported in the identified articles. RESULTS: The analysis encompassed 65 original studies involving 13,667 HIV/AIDS patients, leading to 112 one-to-one comparisons between SR and indirect measurement tools. Statistically significant differences were observed between SR and indirect measurement tools regarding both individual and group adherence (P < 0.05), with Pearson correlation coefficients of 0.843 for individual adherence and 0.684 for group adherence. During meta-epidemiological one-step analysis, SR-measured adherence was determined to be 3.94% (95% CI: -4.48-13.44%) higher for individual adherence and 16.14% (95% CI: 0.81-18.84%) higher for group adherence compared to indirectly measured results. Subgroup analysis indicated that factors such as the year of reporting and geographic region appeared to influence the discrepancies between SR and indirect measurements. Furthermore, network meta-analysis revealed that for both individual and group adherence, the results obtained from most SR and indirect measurement tools were higher than those from electronic monitoring devices, with some demonstrating statistical significance (P < 0.05). CONCLUSIONS: The findings underscored the complexity of accurately measuring medication adherence among ART patients. Significant variability was observed across studies, with self-report methods showing a significant tendency towards overestimation. Year of reporting, geographic region, and adherence measurement tools appeared to influence the differences between SR and indirect measurements. Future research should focus on developing and validating integrated adherence measurements that can combine SR data with indirect measures to achieve a more comprehensive understanding of adherence behaviors.


Asunto(s)
Infecciones por VIH , Cumplimiento de la Medicación , Autoinforme , Humanos , Cumplimiento de la Medicación/estadística & datos numéricos , Cumplimiento de la Medicación/psicología , Infecciones por VIH/tratamiento farmacológico , Fármacos Anti-VIH/uso terapéutico , Antirretrovirales/uso terapéutico
3.
Proc Natl Acad Sci U S A ; 121(28): e2320655121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959043

RESUMEN

SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.


Asunto(s)
Cistina , Ferroptosis , Pirimidinas , Ubiquitina Tiolesterasa , Animales , Femenino , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Cistina/metabolismo , Células HEK293 , Piperazinas/farmacología , Pirimidinas/farmacología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Nucleic Acids Res ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077949

RESUMEN

Precisely modulating the kinetics of toehold-mediated DNA strand displacements (TMSD) is essential for its application in DNA nanotechnology. The sequence in the toehold region significantly influences the kinetics of TMSD. However, due to the large sample space resulting from various arrangements of base sequences and the resulted complex secondary structures, such a correlation is not intuitive. Herein, machine learning was employed to reveal the relationship between the kinetics of TMSD and the toehold sequence as well as the correlated secondary structure of invader strands. Key factors that influence the rate constant of TMSD were identified, such as the number of free hydrogen bonding sites in the invader, the number of free bases in the toehold, and the number of hydrogen bonds in intermediates. Moreover, a predictive model was constructed, which successfully achieved semi-quantitative prediction of rate constants of TMSD even with subtle distinctions in toehold sequence.

5.
Sci Rep ; 14(1): 14814, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937534

RESUMEN

Previous studies have reported associations between newly diagnosed diabetes and poor outcomes after percutaneous coronary intervention (PCI), but there is limited data focusing on elderly patients (age ≥ 65). This study aimed to analyze the prevalence and clinical implications of newly diagnosed diabetes in elderly patients who underwent PCI. From 2004 to 2021, a total of 2456 elderly patients who underwent invasive PCI at Korea University Guro Hospital were prospectively enrolled and followed up for a median of five years. The primary endpoint was five-year major adverse cardiovascular events (MACE). Cox regression was used to evaluate whether newly diagnosed diabetes impacted on long-term clinical outcomes. Newly diagnosed diabetes was presented in approximately 8.1% to 10.9% of elderly patients who underwent PCI. Those who had a new diagnosis of diabetes had a higher risk of MACE than previously known diabetes (25.28% vs. 19.15%, p = 0.039). After adjusting for significant factors, newly diagnosed diabetes remained an independent predictor of MACE (HR [hazard ratio] 1.64, 95% confidence interval [CI] 1.24-2.17, p < 0.001), cardiac death (HR 2.15, 95% CI 1.29-3.59, p = 0.003) and repeat revascularization (HR 1.52, 95% CI 1.09-2.11, p = 0.013), but not for non-fatal myocardial infarction (HR 1.66, 95% CI 0.94-2.12, p = 0.081). Newly diagnosed diabetes was associated with an increased risk of 5-year MACE compared with non-diabetes and previously diagnosed diabetes in elderly patients underwent PCI. More attention should be given to those elderly newly diagnosed diabetes population.


Asunto(s)
Diabetes Mellitus , Intervención Coronaria Percutánea , Humanos , Intervención Coronaria Percutánea/efectos adversos , Anciano , Masculino , Femenino , Prevalencia , Diabetes Mellitus/epidemiología , Factores de Riesgo , República de Corea/epidemiología , Anciano de 80 o más Años , Resultado del Tratamiento , Estudios Prospectivos , Modelos de Riesgos Proporcionales
6.
Sci Total Environ ; 945: 174043, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889813

RESUMEN

Urban heat-islands reportedly expose densely populated areas to higher temperatures. However, the magnitude of the impact of extra hot-day exposure (EHDE) and its association with the effects of urbanization on a global scale remain unclear. As local climate zones (LCZs) refine the impact of differences in urban built-type on heat-island effects, this study aimed to quantify the global EHDE caused by the urban heat-island effect based on LCZs and explored the joint impacts of low gross-domestic product and an increasing vulnerable-age population on EHDE. The results showed that EHDE accounted for 48.01 % of overall hot-day exposure. Additionally, despite a significant geographic differentiation among LCZ types with the highest EHDE intensity, they are almost typically building-intensive LCZs. Furthermore, our study revealed regional differences in the structure of the EHDE share in LCZs, which support the adoption of targeted EHDE mitigation strategies.

7.
J Oral Microbiol ; 16(1): 2344272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698893

RESUMEN

Objective: To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods: In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results: Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion: Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.

8.
iScience ; 27(5): 109728, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706855

RESUMEN

Global warming has led to a surge in heat health risks (HHRs), the impacts of which are particularly pronounced in metropolitan areas of developing countries. In the current study, six metropolitan areas - Beijing, China; Cairo, Egypt; Jakarta, Indonesia; Mumbai, India; Rio de Janeiro, Brazil; and Tehran, Iran - were selected as the study area to further differentiate the built-up landscapes by utilizing the concept of local climate zones. Moreover, we assessed the similarities and differences in HHR associated with the landscape. Results revealed a 30.67% higher HHR in compact built-up landscapes than in the open built-up type. Urban green spaces played an effective but differentiated role in mitigating HHR. That is, low vegetation in urbanized areas and trees in suburban areas significantly mitigated HHR. Collectively, our findings emphasize the role of effective planning and management in addressing HHR and provide empirical support for implementing HHR mitigation and adaptation strategies.

9.
Int J Phytoremediation ; : 1-11, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780520

RESUMEN

Moso bamboo is excellent candidate for cadmium (Cd)/lead (Pb) phytoremediation, while rhizosphere microbiome has significant impact on phytoremediation efficiency of host plant. However, little is known about the rhizosphere bacterial communities of moso bamboo in Cd/Pb contaminated soils. Therefore, this study investigated the assembly patterns and key taxa of rhizosphere bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils, by field sampling, chemical analysis, and 16S rRNA gene sequencing. The results indicated α-diversity between Cd/Pb polluted and unpolluted soils showed a similar pattern (p > 0.05), while ß-diversity was significantly different (p < 0.05). The relative abundance analysis indicated α-proteobacteria (37%) and actinobacteria (31%) were dominant in Cd/Pb polluted soils, while γ-proteobacteria (40%) and α-proteobacteria (22%) were dominant in unpolluted soils. Co-occurrence network analysis indicated microbial networks were less complex and more negative in polluted soils than in unpolluted soils. Mantel analysis indicated soil available phosphorus, organic matter, and available Pb were the most important environmental factors affecting microbial community structure. Correlation analysis showed 11 bacterial genera were significantly positively related to Cd/Pb. Overall, this study identified the bacterial community composition of bamboo rhizosphere in responding to Cd/Pb contamination and provides a theoretical basis for microbe-assistant phytoremediation in the future.


To date, little is known about the bacterial communities in the rhizosphere of moso bamboo under Cd and Pb multiple stresses. This study investigated the assembly patterns and key taxa of rhizospheric bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils. It was found that the bacterial community structure in bamboo rhizosphere is easily influenced by soil chemical environment, such as fertilities and heavy metals. The key bacterial taxa identified here could be target microbe in future microbe-assistant phytoremediation.

10.
Phys Chem Chem Phys ; 26(19): 14131-14139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690682

RESUMEN

Cancer is one of the primary health concerns among humans due to its high incidence rate and lack of effective treatment. Currently, medical techniques to achieve the precise elimination of local cancer lesions with negligible damage to normal tissues are still intensely desired. Herein, we synthesized BaTiO3-TiO2 hollow spheres (BTHSs) for use in microwave dynamic therapy (MWDT) for cancer. Under UV irradiation, BTHSs can mediate the production of multiple reactive oxygen species (ROS), mainly 1O2, which results in a rapid photocatalytic degradation rate (97%), 1.6-fold that of commercial P25. Importantly, the ROS production process can be triggered by microwaves to effectively execute MWDT for cancer. Under microwave irradiation, BTHSs exhibit a remarkable therapeutic effect and slight cytotoxicity. In terms of mechanism, the enhanced ROS production efficiency of BTHSs can be attributed to their unique hollow structure and the formation of a type-II heterojunction by the incorporation of BaTiO3. The hollow structure increases the availability of active sites and enhances light scattering, while the BaTiO3-TiO2 heterojunction enhances the photocatalytic activity of TiO2 through charge transfer and electron-hole separation. Overall, this study provides important insights into the design and optimization of sensitizers for MWDT applications.


Asunto(s)
Compuestos de Bario , Microondas , Especies Reactivas de Oxígeno , Titanio , Titanio/química , Compuestos de Bario/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Neoplasias , Catálisis , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
J Dent Sci ; 19(2): 828-836, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38618134

RESUMEN

Background/purpose: The number of middle-aged and elderly orthodontic patients is increasing due to changes in age composition. It is important to investigate the detailed mechanisms of bone remodeling in orthodontic tooth movement (OTM) in the elderly. However, there are few reports on the mechanism of tooth movement in the elderly. The purpose of the present study was to analyze OTM and osteoclastogenesis in aged mice and to elucidate the mechanism. Materials and methods: It has been reported that tumor necrosis factor (TNF)-α plays an important role in osteoclast formation and OTM. First, 8-week-old and 78-week-old male C57BL/6J mice were subcutaneously injected with TNF-α into the calvaiae, and micro-CT, tartrate-resistant acid phosphatase (TRAP) staining, and real-time PCR were performed to evaluate osteoclast formation and bone resorption. Furthermore, osteoclastogenesis by TNF-α and receptor activator of nuclear factor-kappa B ligand (RANKL) using bone marrow cells was evaluated in vitro. Finally, a nickel-titanium closed-coil spring was attached, mesial movement of the maxillary left first molar was performed, and tooth movement distance and osteoclast formation were evaluated. Results: Compared to 8-week-old mice, 78-week-old mice had decreased TNF-α-induced bone resorption, osteoclastogenesis, and TRAP and cathepsin K expression in the calvariae. In vitro osteoclast formation also decreased in 78-week-old mice. Furthermore, tooth movement distance and osteoclastogenesis were reduced. Conclusion: OTM decreased in aged mice, which was shown to be caused by a decrease in osteoclastogenesis. Therefore, it was suggested that it is necessary to keep in mind that tooth movement may be suppressed when treating elderly patients.

13.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473802

RESUMEN

Glucose-insulinotropic polypeptide (GIP) is an incretin hormone that induces insulin secretion and decreases blood glucose levels. In addition, it has been reported to suppress osteoclast formation. Native GIP is rapidly degraded by dipeptidyl peptidase-4 (DPP-4). (D-Ala2)GIP is a newly developed GIP analog that demonstrates enhanced resistance to DPP-4. This study aimed to evaluate the influence of (D-Ala2)GIP on osteoclast formation and bone resorption during lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. In vivo, mice received supracalvarial injections of LPS with or without (D-Ala2)GIP for 5 days. Osteoclast formation and bone resorption were evaluated, and TNF-α and RANKL expression were measured. In vitro, the influence of (D-Ala2)GIP on RANKL- and TNF-α-induced osteoclastogenesis, LPS-triggered TNF-α expression in macrophages, and RANKL expression in osteoblasts were examined. Compared to the LPS-only group, calvariae co-administered LPS and (D-Ala2)GIP led to less osteoclast formation, lower bone resorption, and decreased TNF-α and RANKL expression. (D-Ala2)GIP inhibited osteoclastogenesis induced by RANKL and TNF-α and downregulated TNF-α expression in macrophages and RANKL expression in osteoblasts in vitro. Furthermore, (D-Ala2)GIP suppressed the MAPK signaling pathway. The results suggest that (D-Ala2)GIP dampened LPS-triggered osteoclast formation and bone resorption in vivo by reducing TNF-α and RANKL expression and directly inhibiting osteoclastogenesis.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Ratones , Osteoclastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Glucosa/metabolismo , Resorción Ósea/metabolismo , Péptidos/metabolismo
14.
Int Immunopharmacol ; 131: 111871, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38492339

RESUMEN

Inflammatory bowel disease (IBD) is a recurrent chronic colitis disease with increasing incidence and prevalence year by year. The single efficacy and significant side effects of traditional IBD treatment drugs have promoted the flourishing development of new drugs. Inspired by many health benefits of carbon dots (CDs) based nanomedicine in biomedical applications, a metal-free carbon dots (CP-CDs) was synthesized from citric acid and polyethylene polyamine to treat colitis. Oxidative stress tests at the cellular and nematode levels demonstrated CP-CDs have good antioxidant effects, while the toxicity of CP-CDs to cells and nematodes is low. CP-CDs were further applied to dextran sodium sulfate (DSS)-induced colitis in mice models, and it was found that CP-CDs can reduce the disease activity index (DAI) score of colon tissue and restore the intestinal barrier. Further, the anti-colitis mechanisms of CP-CDs were explored, one of which is to regulate intestinal oxidative stress in inflammatory mice, further reducing the expression of inflammatory cytokines, and thus alleviating colitis. Notably, 16S rRNA sequence analysis showed that the abundance of beneficial bacteria (Ligilactobacillus and Enterorhabdus) in the intestinal tract increased, while that of harmful bacteria (unclassified_Clostridia_UCG_014) decreased after CP-CDs treatment, indicating that CP-CDs rebalancing the gut microbiota destroyed by DSS is another important mechanism. In short, these non-toxic carbon dots not only have the potential for multi-factor combined relief of colitis but also offer an alternative therapy medicine for patients suffering from IBD.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Nematodos , Humanos , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , ARN Ribosómico 16S , Estrés Oxidativo , Carbono/uso terapéutico , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Sulfato de Dextran , Colon , Ratones Endogámicos C57BL
15.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483614

RESUMEN

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi , Heterocigoto , Insuficiencia Ovárica Primaria , Humanos , Insuficiencia Ovárica Primaria/genética , Femenino , Adulto , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Secuenciación del Exoma , Daño del ADN , Anemia de Fanconi/genética , Mutación Missense
16.
Environ Sci Ecotechnol ; 20: 100405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38544949

RESUMEN

The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C3N4 substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.

17.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069322

RESUMEN

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that exerts physiological effects via G protein-coupled receptor 120 (GPR120). In our previous studies, we figured out the inhibitory effects of DHA on TNF-α (Tumor necrosis factor-α)-induced osteoclastogenesis via GPR120 in vivo. Moreover, DHA directly suppressed RANKL expression in osteoblasts via GPR120 in vitro. In this study, we generated bone marrow chimeric mice using GPR120 deficient mice (GPR120-KO) to study the inhibitory effects of DHA on bone resorption and osteoclast formation. Bone marrow cells of wild-type (WT) or GPR120-KO mice were transplanted into irradiated recipient mice, which were WT or GPR120 deficient mice. The resulting chimeric mice contained stromal cells from the recipient and bone marrow cells, including osteoclast precursors, from the donor. These chimeric mice were used to perform a series of histological and microfocus computed tomography (micro-CT) analyses after TNF-α injection for induction of osteoclast formation with or without DHA. Osteoclast number and bone resorption were found to be significantly increased in chimeric mice, which did not express GPR120 in stromal cells, compared to chimeric mice, which expressed GPR120 in stromal cells. DHA was also found to suppress specific signaling pathways. We summarized that DHA suppressed TNF-α-induced stromal-dependent osteoclast formation and bone resorption via GPR120.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Ratones , Osteoclastos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Médula Ósea/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular , Células de la Médula Ósea/metabolismo
18.
Environ Res ; 239(Pt 1): 117339, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832773

RESUMEN

The easily synthesized, cost-effective, and stable photocatalysts for sulfite activation are always required for the enhancement of organic contaminants degradation. Herein, the facile coprecipitation synthesis of Bismuth oxybromide (BiOBr)/Montmorillonite (MMT) was reported, which could activate sulfite (SO32-/HSO3-) under sunlight and accelerate the catalytic performance more effectively than pristine BiOBr. After adding sulfite to the photocatalysis system, the photodegradation efficiency of atrazine (ATZ) achieved 73.7% ± 1.5% after 5 min and 94.4% ± 1.6% after 30 min of sunlight irradiation with BiOBr/MMT. The BiOBr/MMT-sulfite system also presented remarkable photocatalytic performance to eliminate various contaminants, including ciprofloxacin, sulfadiazine, tetracycline, and carbamazepine. The various features of the photocatalyst materials were studied, including their surface morphology, structure, optical properties, and composition. The results illustrated that by adding MMT, the bandgap of the pristine BiOBr was reduced and the surface area was increased, which led to an increased ability to adsorb materials. Results of various influence factors showed this enhanced system had satisfactory and stable removal performance of ATZ in the pH range of 3.0-6.5, but HPO42- had a strong negative effect on the system performance. Oxysulfur radicals (SO5·- and SO4·-), h+, and 1O2 were discovered as the prevailing active species in the BiOBr/MMT-sulfite system. The proposed degradation mechanism of this photocatalyst-enhanced system revealed that sulfite adsorption on the surface of the photocatalyst played a vital role during the initial phase, and the degradation pathway of ATZ was discussed. This study provides a new synthesis strategy of a photocatalyst for sulfite activation and expands the potential uses of Bi-based photocatalysts in degrading difficult-to-remove organic pollutants.


Asunto(s)
Bentonita , Luz , Luz Solar , Sulfitos , Catálisis
19.
Front Endocrinol (Lausanne) ; 14: 1207502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795376

RESUMEN

Introduction: Hypertension is a major risk factor for cardiovascular disease (CVD) and is associated with increased bone loss due to excessive activity of the local renin-angiotensin system (RAS). Angiotensinogen/Angiotensin (ANG) II/Angiotensin II type 1 receptor (AT1R) axis is considered as the core axis regulating RAS activity. Azilsartan is an FDA-approved selective AT1R antagonist that is used to treat hypertension. This study aimed to determine whether azilsartan affects formation of osteoclast, resorption of bone, and the expression of cytokines linked with osteoclastogenesis during lipopolysaccharide (LPS)-triggered inflammation in vivo. Methods: In vivo, following a 5-day supracalvarial injection of LPS or tumor necrosis factor-alpha (TNF-α) with or without azilsartan, the proportion of bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, which are identified as osteoclasts on mice calvariae were counted. The mRNA expression levels of TRAP, cathepsin K, receptor activator of NF-κB ligand (RANKL), and TNF-α were also evaluated. In vitro, the effect of azilsartan (0, 0.01, 0.1, 1, and 10 µM) on RANKL and TNF-α-triggered osteoclastogenesis were investigated. Also, whether azilsartan restrains LPS-triggered TNF-α mRNA and protein expression in macrophages and RANKL expression in osteoblasts were assessed. Furthermore, western blotting for analysis of mitogen-activated protein kinases (MAPKs) signaling was conducted. Results: Azilsartan-treated calvariae exhibited significantly lower bone resorption and osteoclastogenesis than those treated with LPS alone. In vivo, LPS with azilsartan administration resulted in lower levels of receptor activator of RANKL and TNF-α mRNA expression than LPS administration alone. Nevertheless, azilsartan did not show inhibitory effect on RANKL- and TNF-α-triggered osteoclastogenesis in vitro. Compared to macrophages treated with LPS, TNF-α mRNA and protein levels were lower in macrophages treated by LPS with azilsartan. In contrast, RANKL mRNA and protein expression levels in osteoblasts were the same in cells co-treated with azilsartan and LPS and those exposed to LPS only. Furthermore, azilsartan suppressed LPS-triggered MAPKs signaling pathway in macrophages. After 5-day supracalvarial injection, there is no difference between TNF-α injection group and TNF-α with azilsartan injection group. Conclusion: These findings imply that azilsartan prevents LPS-triggered TNF-α production in macrophages, which in turn prevents LPS-Triggered osteoclast formation and bone resorption in vivo.


Asunto(s)
Resorción Ósea , Hipertensión , Animales , Ratones , Osteogénesis , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/metabolismo , Resorción Ósea/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Hipertensión/metabolismo
20.
J Thorac Dis ; 15(8): 4413-4425, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37691687

RESUMEN

Background: Aneurysmal subarachnoid hemorrhage (aSAH) necessitating mechanical ventilation (MV) presents a serious challenge for intensivists. Laboratory blood tests reflect individual physiological and biochemical states, and provide a useful tool for identifying patients with critical condition and stratifying risk levels of death. This study aimed to determine the prognostic role of initial routine laboratory blood tests in these patients. Methods: This retrospective cohort study included 190 aSAH patients requiring MV in the neurosurgical intensive care unit from December 2019 to March 2022. Follow-up evaluation was performed in May 2022 via routine outpatient appointment or telephone interview. The primary outcomes were death occurring within 7 days after discharge (short-term mortality) or reported at time of follow-up (long-term mortality). Clinico-demographic and radiological characteristics, initial routine laboratory blood tests (e.g., metabolic panels and arterial blood gas analysis), and treatment were analyzed and compared in relation to mortality. Multivariable logistic and Cox regression analyses, with adjustment of other clinical predictors, were performed to determine independent laboratory test predictors for short- and long-term mortality, respectively. Results: The patients had a median age of 62 years, with a median World Federation of Neurosurgical Societies grade (WFNS) score of 5 and a median modified Fisher grade (mFisher) score of 4. The short- and long-term mortality of this cohort were 60.5% and 65.3%, respectively. Compared with survivors, non-survivors had more severe disease upon admission based on neurological status and imaging features and a shorter disease course, and were more likely to receive conservative treatment. Initial ionized calcium was found to be independently associate with both short-term [adjusted odds ratio (OR): 0.92; 95% confidence interval (CI): 0.86 to 0.99; P=0.020] and long-term mortality [adjusted hazard ratio (HR): 0.95; 95% CI: 0.92 to 0.99; P=0.010], after adjusting for potential confounders. Moreover, the admission glucose level was found to be associated only with short-term mortality (adjusted OR: 1.19; 95% CI: 1.06 to 1.34; P=0.004). Conclusions: Laboratory screening may provide a useful tool for the management of aSAH patients requiring MV in stratifying risk levels for mortality and for better clinical decision-making. Further study is needed to validate the effects of calcium supplementation and glucose-lowering therapy on the outcomes in this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...