Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 680: 177-183, 2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-37742346

RESUMEN

Despite being a powerful weapon against cancer cells, cisplatin's therapeutic potential is hampered by numerous adverse reactions, including acute kidney injury (AKI). Compound 5 has 3-SH fragments at the end of the vertical short alkyl side chain, which is an ROS scavenger synthesized. In this study, we evaluated the protective effect of compound 5 on the kidney after cisplatin administration and its mechanism. The results founded that compound 5 can alleviate serum urea nitrogen and serum creatinine induced by cisplatin administration in vivo. In addition, histopathological analysis of the kidneys showed that compound 5 significantly reduced cisplatin-induced (Cis-induced) renal toxicity compared with the cisplatin group. A mechanism study showed that compound 5 significantly reduces NOX4 levels, improves the activity of antioxidant enzymes (SOD and GSH-Px), reduces Malondialdehyde (MDA) levels, increases the total antioxidant level, reduces oxidative stress, and thus reduces kidney tissue damage. At the same time, compound 5 activated the Nrf2 signaling pathway. In addition, it can increase the expression of Bax, reduce the expression of Bcl-2 and caspase-3, a marker of apoptosis, which is beneficial to the survival of kidney cells. Additionally, compound 5 did not interfere with the antitumor effects of cisplatin in in vivo xenotransplantation models.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Humanos , Cisplatino/farmacología , Antioxidantes/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Riñón/patología , Estrés Oxidativo , Apoptosis
2.
Eur J Pharmacol ; 959: 176060, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37775019

RESUMEN

Colorectal cancer (CRC) is a common malignant tumor with a high incidence and mortality worldwide. Preoperative chemoradiotherapy is a common treatment for patients with metastatic colorectal cancer (mCRC) as it reduces colostomy and local recurrence. The RAS (rat sarcoma)-RAF (extracellular signal-regulated kinase)-MEK (mitogen-activated protein kinase)-ERK (extracellular signal-regulated kinase) pathway regulates important cellular processes in the CRC. Abnormal ERK activation stimulates cell growth and provides a survival advantage. Our group has previously reported that the compound KZ02 has a stronger ability to inhibit tumor growth than AZD6244 (a MEK inhibitor). In this study, we evaluated the antitumor activity of KZ02 in combination with ionizing radiation (IR) and investigated its mechanism of action in BRAF-mutated colorectal cancer. Our results showed that this combination kills tumor cells better than either radiation or drugs alone, both in vivo and in vitro. Furthermore, studies have shown that KZ02 inhibits ERK overactivation. The combination resulted in a G1 phase arrest, a reduction in the radioresistant S phase, and aggravating DNA damage. It can also inhibit Pim-1 (Moloney murine leukemia virus-1), p-BAD (Bcl-2 associated agonist of cell death), Bcl-2 (B-cell lymphoma 2) and Bcl-XL (B-cell lymphoma-extra large) levels and promote apoptosis when combined with radiation. Our results suggest that KZ02 significantly increases the radiosensitivity of BRAF-mutated CRC cells by perturbing the cell cycle, increasing DNA damage, and promoting tumor apoptosis.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proliferación Celular , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/radioterapia , Tolerancia a Radiación/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Línea Celular Tumoral
3.
J Pineal Res ; 75(2): e12897, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37391878

RESUMEN

Salivary gland damage caused by ionizing radiation (IR) severely affects the patient quality of life and influences the efficacy of radiotherapy. Most current treatment modalities are palliative, so effective prevention of damage caused by IR is essential. Melatonin (MLT) is an antioxidant that has been reported to prevent IR-induced damage in a range of systems, including the hematopoietic system and gastrointestinal tract. In this study, we explored the effects of MLT on whole-neck irradiation (WNI)-induced salivary gland damage in mice. The results revealed that by protecting the channel protein AQP-5, MLT not only alleviates salivary gland dysfunction and maintains salivary flow rate, but also protects salivary gland structure and inhibits the WNI-induced reduction in mucin production and degree of fibrosis. Compared with WNI-treated mice, in those receiving MLT, we observed a modulation of oxidative stress in salivary glands via its effects on 8-OHdG and SOD2, as well as an inhibition of DNA damage and apoptosis. With respect to its radioprotective mechanism, we found that MLT may alleviate WNI-induced xerostomia partly by regulating RPL18A. In vitro, we demonstrated that MLT has radioprotective effects on salivary gland stem cells (SGSCs). In conclusion, our data this study indicate that MLT can effectively alleviate radiation-induced damage in salivary glands, thereby providing a new candidate for the prevention of WNI-induced xerostomia.


Asunto(s)
Melatonina , Xerostomía , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Calidad de Vida , Glándulas Salivales/metabolismo , Glándulas Salivales/efectos de la radiación , Xerostomía/tratamiento farmacológico , Xerostomía/etiología , Xerostomía/prevención & control , Radiación Ionizante
4.
Food Funct ; 14(14): 6636-6653, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37401725

RESUMEN

High-fat diet (HFD) increases the risk of developing malignant tumors. Ionizing radiation (IR) is used as an adjuvant treatment in oncology. In this study, we investigated the effects of an 8-week 35% fat HFD on the tolerance to IR and the modulatory effect of melatonin (MLT). The results of lethal dose irradiation survival experiments revealed that the 8-week HFD altered the radiation tolerance of female mice and increased their radiosensitivity, whereas it had no comparable effects on males. Pre-treatment with MLT was, however, found to attenuate the radiation-induced hematopoietic damage in mice, promote intestinal structural repair after whole abdominal irradiation (WAI), and enhance the regeneration of Lgr5+ intestinal stem cells. 16S rRNA high-throughput sequencing and untargeted metabolome analyses revealed that HFD consumption and WAI sex-specifically altered the composition of intestinal microbiota and fecal metabolites and that MLT supplementation differentially modulated the composition of the intestinal microflora in mice. However, in both males and females, different bacteria were associated with the modulation of the metabolite 5-methoxytryptamine. Collectively, the findings indicate that MLT ameliorates the radiation-induced damage and sex-specifically shapes the composition of the gut microbiota and metabolites, protecting mice from the adverse side effects associated with HFD and IR.


Asunto(s)
Melatonina , Masculino , Ratones , Femenino , Animales , Melatonina/farmacología , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S , Intestinos/microbiología , Tolerancia a Radiación , Ratones Endogámicos C57BL
5.
Sci Rep ; 12(1): 8419, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589816

RESUMEN

Ionizing radiation (IR) can cause damage to the structure and function of salivary glands. Our research group independently synthesized the ROS scavenger, HL-003. The aim of this study was to explore the protective effects and underlying mechanisms of HL-003 on radiation-induced salivary gland injury. Salivary flow rate measurement, H&E staining, immunohistochemistry, FRAP, TUNEL, and western blotting were used to evaluate the radioprotective effect on salivary glands. The results showed that HL-003 protected the salivary secretion function by protecting the AQP-5 protein, on the salivary epithelial cell membrane, from IR damage. HL-003 reduced oxidative stress in the salivary gland by regulating the expression of ROS-related proteins NOX4, SOD2, and 8-OHdG. Furthermore, HL-003 downregulated the expression of p-p53, Bax, caspase 3, and caspase 9, and upregulated the expression of Bcl-2, suggesting that it could inhibit the activation of p53 to reduce cell apoptosis. In conclusion, HL-003 is an effective radioprotector that prevents damage of the radiation-induced salivary gland.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Animales , Apoptosis , Etiquetado Corte-Fin in Situ , Ratones , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Glándulas Salivales/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Nutrients ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615722

RESUMEN

The consumption of a high-fat diet (HFD) and exposure to ionizing radiation (IR) are closely associated with many diseases. To evaluate the interaction between HFDs and IR-induced injury, we gave mice whole abdominal irradiation (WAI) to examine the extent of intestinal injury under different dietary conditions. Melatonin (MLT) is a free radical scavenger that effectively prevents hematopoietic, immune, and gastrointestinal damage induced by IR. However, its effects on WAI-induced intestinal injury in HFD-fed mice remain unclear. We demonstrated that MLT can promote intestinal structural repair following WAI and enhance the regeneration capacity of Lgr5+ intestinal stem cells. In addition, we investigated the effects of radiation damage on sexual dimorphism in HFD-fed mice. The results showed that the degree of IR-induced intestinal injury was more severe in the HFD-fed female mice. MLT preserved the intestinal microbiota composition of HFD-fed mice and increased the abundance of Bacteroides and Proteobacteria in male and female mice, respectively. In conclusion, MLT may reduce the negative effects of HFD and IR, thereby providing assistance in preserving the structure and function of the intestine.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Ratones , Femenino , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Melatonina/farmacología , Caracteres Sexuales , Intestinos/microbiología , Ratones Endogámicos C57BL
7.
Oxid Med Cell Longev ; 2021: 4714649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471464

RESUMEN

The risk of radiation damage has increased with the rapid development of nuclear technology and radiotherapy. Hence, research on radioprotective agents is of utmost importance. In the present study, a novel aminothiol compound 12, containing a linear alkylamino backbone and three terminal thiols, was synthesized. Owing to the appropriate capped groups in the chains, it has an improved permeability and oral bioavailability compared to other radioprotective agents. Oral administration of compound 12 improved the survival of mice that received lethal doses of γ-irradiation. Experimental results demonstrated that compound 12 not only mitigated total body irradiation-induced hematopoietic injury by increasing the frequencies of hematopoietic stem and progenitor cells but also prevented abdominal irradiation-induced intestinal injury by increasing the survival of Lgr5+ intestinal cells, lysozyme+ Paneth cells, and Ki67+ cells. In addition, compound 12 decreased oxidative stress by upregulating the expression of Nrf2 and NQO1 and downregulating the expression of NOX1. Further, compound 12 inhibited γ-irradiation-induced DNA damage and alleviated G2/M phase arrest. Moreover, compound 12 decreased the levels of p53 and Bax and increased the level of Bcl-2, demonstrating that it may suppress radiation-induced apoptosis via the p53 pathway. These results indicate that compound 12 has the possibility of preventing radiation injury and can be a potential radioprotector for clinical applications.


Asunto(s)
Traumatismos Experimentales por Radiación/prevención & control , Protectores contra Radiación/uso terapéutico , Compuestos de Sulfhidrilo/uso terapéutico , Animales , Humanos , Masculino , Ratones , Protectores contra Radiación/farmacología , Compuestos de Sulfhidrilo/farmacología
8.
J Environ Sci (China) ; 16(5): 755-61, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15559806

RESUMEN

Freshwater ecosystems provide a host of services to humanity. These services are now rapidly being lost, not least because of the inability of making the impacts measurable. To overcome this obstacle, assessment frameworks for freshwater ecosystem services are needed. A simple water equivalent framework to assess the ecological services provided by freshwater ecosystems was developed in this study. It translated the occupation of freshwater ecosystem services into biologically freshwater volumes and then compares this consumption to the freshwater throughput, that is, the ecological capacity available in this region. In this way, we use the example of Yangzhou Prefecture, to account the main categories of human occupation of water ecosystem services. The result showed that there is a huge gap between the consumption and the supply of freshwater ecosystem services. This must encourage local government to make land-use and water management decisions both economically rational and environmentally sound.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Agua Dulce , China , Ambiente , Monitoreo del Ambiente , Explotaciones Pesqueras , Actividades Humanas , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...