RESUMEN
This study aimed to investigate the effects and possible mechanisms of adenylate cyclase 1 (ADCY1) on pirarubicin-induced cardiomyocyte injury. HL-1 cells were treated with pirarubicin (THP) to induce intracellular toxicity, and the extent of damage to mouse cardiomyocytes was assessed using CCK-8, Edu, flow cytometry, ROS, ELISA, RT-qPCR and western blotting. THP treatment reduced the viability of HL-1 cells, inhibited proliferation, induced apoptosis and triggered oxidative stress. In addition, the RT-qPCR results revealed that ADCY1 expression was significantly elevated in HL-1 cells, and molecular docking showed a direct interaction between ADCY1 and THP. Western blotting showed that ADCY1, phospho-protein kinase A and GRIN2D expression were also significantly elevated. Knockdown of ADCY1 attenuated THP-induced cardiotoxicity, possibly by regulating the ADCY1/PKA/GRIN2D pathway.
Asunto(s)
Adenilil Ciclasas , Cardiotoxicidad , Doxorrubicina , Técnicas de Silenciamiento del Gen , Miocitos Cardíacos , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Animales , Ratones , Cardiotoxicidad/genética , Doxorrubicina/toxicidad , Doxorrubicina/farmacología , Doxorrubicina/análogos & derivados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Línea Celular , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/toxicidadRESUMEN
BACKGROUND: Hyperglycemia is a rapidly increasing risk factor for cancer mortality worldwide. However, the doseâresponse relationship between glucose levels and all-cause mortality in cancer survivors is still uncertain. METHODS: We enrolled 4,491 cancer survivors (weighted population 19,465,739) from the 1999-2019 National Health and Nutrition Examination Survey (NHANES). Cancer survivors were defined based on the question of whether they had ever been diagnosed with cancer by a doctor or a health professional. Hemoglobin A1c (HbA1c) was selected in this study as a stable marker of glucose level. Mortality was ascertained by linkage to National Death Index records until December 31, 2019. Cox proportional hazard, KaplanâMeier survival curves and Restricted cubic spline regression models were used to evaluate the associations between HbA1c and all-cause mortality risk in cancer survivors. RESULTS: In NHANES, after adjusting for confounders, HbA1c had an independent nonlinear association with increased all-cause mortality in cancer survivors (nonlinear P value < 0.05). The threshold value for HbA1c was 5.4%, and the HRs (95% CI) below and above the threshold value were 0.917 (0.856,0.983) and 1.026 (1.010,1.043), respectively. Similar associations were found between fasting glucose and all-cause mortality in cancer survivors, and the threshold value was 5.7 mmol/L. CONCLUSIONS: HbA1c was nonlinearly associated with all-cause mortality in cancer survivors, and the critical value of HbA1c in decreased mortality was 5.4%, suggesting optimal glucose management in cancer survivors may be a key to preventing premature death in cancer survivors.
Asunto(s)
Glucemia , Supervivientes de Cáncer , Hemoglobina Glucada , Encuestas Nutricionales , Humanos , Supervivientes de Cáncer/estadística & datos numéricos , Femenino , Masculino , Persona de Mediana Edad , Hemoglobina Glucada/análisis , Glucemia/análisis , Adulto , Anciano , Causas de Muerte , Neoplasias/mortalidad , Neoplasias/sangre , Factores de Riesgo , Hiperglucemia/mortalidad , Estados Unidos/epidemiología , Modelos de Riesgos ProporcionalesRESUMEN
Vascular calcification is a prevalent hallmark of cardiovascular risk in elderly and diabetic individuals. Senescent vascular smooth muscle cells (VSMCs) participate in calcification; however, the associated underlying mechanisms remain unknown. Aberrant activation of the cytosolic DNA sensing adaptor stimulator of interferon gene 1 (STING1) caused by cytosolic DNA, particularly that leaked from damaged mitochondria, is a catalyst for aging-related diseases. Although oleoylethanolamide (OEA) is an endogenous bioactive lipid mediator with lipid overload-associated vasoprotective effects, its benefit in diabetic vascular calcification remains uncharacterized. This study focused on the role of STING1 in mitochondrial dysfunction-mediated calcification and premature VMSC senescence in diabetes and the effects of OEA on these pathological processes. In diabetic in vivo rat/mouse aorta calcification models and an in vitro VSMC calcification model induced by Nε-carboxymethyl-lysine (CML), senescence levels, STING1 signaling activation, and mitochondrial damage markers were significantly augmented; however, these alterations were markedly alleviated by OEA, partially in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner, and similar anti-calcification and senescence effects were observed in STING1-knockout mice and STING1-knockdown VSMCs. Mechanistically, mitochondrial DNA (mtDNA) damage was aggravated by CML in a reactive oxygen species-dependent manner, followed by mtDNA leakage into the cytosol, contributing to VSMC senescence-associated calcification via STING1 pathway activation. OEA treatment significantly attenuated the aforementioned cytotoxic effects of CML by enhancing cellular antioxidant capacity through the maintenance of Nrf2 translocation to the nucleus. Collectively, targeting STING1, a newly defined VSMC senescence regulator, contributes to anti-vascular calcification effects.
Asunto(s)
Senescencia Celular , ADN Mitocondrial , Endocannabinoides , Proteínas de la Membrana , Músculo Liso Vascular , Factor 2 Relacionado con NF-E2 , Ácidos Oléicos , Estrés Oxidativo , Calcificación Vascular , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Ratones , Senescencia Celular/efectos de los fármacos , Ratas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ácidos Oléicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Masculino , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Transducción de Señal/efectos de los fármacos , Humanos , Ratones Noqueados , Ratones Endogámicos C57BLRESUMEN
[This corrects the article DOI: 10.1016/j.isci.2024.109057.].
RESUMEN
Identifying genetic markers of economically valuable traits has practical benefits for the meat goat industry. To better understand the genomic variations influencing body conformation traits, a genome-wide association study was performed on Tashi goats, an indigenous Chinese goat breed. A total of 155 Tashi goats were phenotyped for eight body conformation traits: body height, body length, chest depth, chest width, chest girth, rump width, rump height, and cannon bone circumference. Then, 100 Tashi goats were randomly selected for whole-genome sequencing and genotyped. We obtained 1676.4 Gb of raw data with an average sequencing depth of 6.2X. Clean reads were aligned to the ARS1.2 reference genome, and 11,257,923 single nucleotide polymorphisms (SNPs) were identified. The structure analysis showed that these Tashi goats were almost not genetically related. The 109, 20, 52, 14, 62, 51, 70, and 7 SNPs were significantly associated with body height, body length, chest depth, chest width, chest girth, rump width, rump height, and cannon bone circumference. Within the ±500 kb region of significant SNPs, 183 genes were annotated. The most significantly enriched KEGG pathway was "olfactory transduction", and the most significantly enriched gene ontology (GO) terms were "cellular process", "cellular anatomical entity", and "molecular transducer activity". Interestingly, we found several SNPs on chromosomes 10 and 11 that have been identified multiple times for all eight body conformation traits located in two fragments (114 kb and 1.03 Mb). In chr.10:25988403-26102739, the six SNPs were tightly linked, the TACTAG genotype was the highest at 91.8%, and the FNTB (Farnesyltransferase, CAAX Box Beta) and CHURC1 (Churchill Domain Containing 1) genes were located. In chr.11:88216493-89250659, ten SNPs were identified with several dependent linkage disequilibrium (LD) blocks, and seven related genes were annotated, but no significant SNP was located in them. Our results provide valuable biological information for improving growth performance with practical applications for genomic selection in goats.
RESUMEN
Triple-negative breast cancer (TNBC) has attracted attention due to its poor prognosis and limited treatment options. The mechanisms underlying the association between circular RNAs (circRNAs) and the occurrence and development of TNBC remain unclear. CircZCCHC2 is observed to be upregulated in TNBC cells, tissues, and plasma exosomes. Knockdown of circZCCHC2 inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition of TNBC cells in vitro and in vivo. Pirarubicin (THP) treatment downregulated circZCCHC2, and circZCCHC2 affected the sensitivity to THP. CircZCCHC2/miR-1200/translocated promoter region, the nuclear basket protein (TPR) pathway was cascaded and verified. It is demonstrated that circZCCHC2 plays a crucial role in the malignant progression of TNBC via the miR-1200/TPR axis, thereby activating the RAS-RAF-MEK-ERK pathway. The present results indicate that circZCCHC2 has the potential to serve as a novel prognostic biomarker for TNBC.
RESUMEN
Highly active single-atom electrocatalysts for the oxygen reduction reaction are crucial for improving the energy conversion efficiency, but they suffer from a limited choice of metal centers and unsatisfactory stabilities. Here, this work reports that optimization of the binding energies for reaction intermediates by tuning the d-orbital hybridization with axial groups converts inactive subgroup-IVB (Ti, Zr, Hf) moieties (MN4) into active motifs (MN4O), as confirmed with theoretical calculations. The competition between metal-ligand covalency and metal-intermediate covalency affects the d-p orbital hybridization between the metal site and the intermediates, converting the metal centers into active sites. Subsequently, dispersed single-atom M sites coordinated by nitrogen/oxygen groups have been prepared on graphene (s-M-N/O-C) catalysts on a large-scale with high-energy milling and pyrolysis. Impressively, the s-Hf-N/O-C catalyst with 5.08 wt% Hf exhibits a half-wave potential of 0.920 V and encouraging performance in a zinc-air battery with an extraordinary cycling life of over 1600 h and a large peak power-density of 256.9 mW cm-2. This work provides promising single-atom electrocatalysts and principles for preparing other catalysts for the oxygen reduction reaction.
RESUMEN
Background: The impact of inflammatory factors on the risk of diabetic nephropathy (DN) is inconsistent. Two-sample Mendelian randomization (MR) analyses were used to detect the causal role of inflammatory factors in DN risk. Methods: Inflammatory factor GWAS summary data were collected from a meta-analysis including 8,293 Finnish participants, and DN information was extracted from a GWAS of 213,746 individuals from FinnGen. The MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) outlier test was used for the removal of horizontal pleiotropic outliers. Multivariable MR analysis was also used to adjust for pleiotropy. Results: IFN-γ [ORIVW: 1.33; 95% CI: 1.09-1.63; p=0.005] and SCF [ORIVW: 1.25, 1.02-1.52; p = 0.027] were associated with an increased risk of DN. MIP1b [ORIVW: 0.92; 95% CI: 0.85-0.98; p = 0.022] and IL-16 [ORIVW: 0.89, 0.81-0.99; p = 0.043] showed negative associations with the risk of DN. We validated our MR results with MR-PRESSO analyses. Significant horizontal pleiotropy was not found. Moreover, in the multivariable MR analysis, the associations between cytokines and DN risk remained. Conclusion: Our MR results based on genetic data contribute to a better understanding of the pathogenesis of DN and provide evidence for a causal effect of inflammatory factors on DN. These findings support targeting specific inflammatory factors to alleviate DN risk.
RESUMEN
The vital pathological processes in intimal hyperplasia include aberrant vascular smooth muscle cells (VSMCs) proliferation, migration, and phenotypic switching. Rosmarinic acid (RA) is a natural phenolic acid compound. Nevertheless, the underlying mechanism of RA in neointimal hyperplasia is still unclear. Our analysis illustrated that miR-25-3p mimics significantly enhanced PDGF-BB-mediated VSMCs proliferation, migration, and phenotypic switching while RA partially weakened the effect of miR-25-3p. Mechanistically, we found that miR-25-3p directly targets sirtuin (SIRT6). The suppressive effect of the miR-25-3p inhibitor on PDGF-BB-induced VSMCs proliferation, migration, and phenotypic switch was partially eliminated by SIRT6 knockdown. The suppression of the PDGF-BB-stimulated Nrf2/ARE signaling pathway that was activated by the miR-25-3p inhibitor was exacerbated by the SIRT6 knockdown. In in vivo experiments, RA reduced the degree of intimal hyperplasia while miR-25-3p agomir partially reversed the suppressive effect of RA in vascular remodeling. Our results indicate that RA activates the Nrf2/ARE signaling pathway via the miR-25-3p/SIRT6 axis to inhibit vascular remodeling.
Asunto(s)
MicroARNs , Sirtuinas , Humanos , Becaplermina/farmacología , Proliferación Celular , Hiperplasia/metabolismo , Hiperplasia/patología , Ácido Rosmarínico , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Remodelación Vascular , Músculo Liso Vascular , Movimiento Celular , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Miocitos del Músculo Liso , Células Cultivadas , Sirtuinas/metabolismo , Sirtuinas/farmacologíaRESUMEN
Pirarubicin (THP) is a widely used antitumor agent in clinical practice, but its reduced sensitivity during treatment has limited its use. The aim of this study was to investigate the role and mechanism of LncRNA Miat knockdown in improving THP sensitivity. We assessed the role of Miat overexpression/knockdown on THP-mediated 4T1 anticancer activity by CCK8, TUNEL, flow cytometry, wound healing assay, Transwell, Ca2+ , real time quantitative PCR (RT-qPCR) and Western blot. The results showed that Miat expression was higher in 4T1 mouse breast cancer cells than in HC11 mouse mammary epithelial cells, while THP decreased Miat expression in 4T1. Miat knockdown in combination with further reduced cell viability, promoted apoptosis and inhibited migration compared to THP alone. This may be related to the reduction of calcium ions in 4T1. In conclusion, Miat knockdown enhanced the sensitivity of THP to 4T1 by inhibiting calcium channels.
Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Ratones , Animales , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Doxorrubicina/farmacología , Apoptosis/genéticaRESUMEN
In recent years, the safety of public health has attracted more and more attention. In order to avoid the spread of bacteria and reduce the diseases caused by their invasion of the human body, novel filtration and antibacterial materials have attracted more and more attention. In this work, the antibacterial agents silver nanoparticles (AgNPs) and cetylpyridine bromide (CPB) were introduced into a cellulose acetate (CA) nanofiber film by electrospinning technology to prepare CA-based composite films with good antibacterial and filtration properties. The results of the antibacterial test of the composite nanofiber films showed that AgNPs and CPB had synergistic antibacterial effects and exhibited good antibacterial properties against a variety of bacteria. In addition, in vitro cytotoxicity, skin irritation and skin sensitization experiments proved that the CA/AgNPs, CA/CPB and CA/CPB/AgNPs films produced no skin irritation or sensitization in the short term. These are expected to become potential materials for the preparation of new antibacterial masks. This work provides a new idea for developing materials with good antibacterial properties for enhancing protection via filtration masks.
Asunto(s)
Nanopartículas del Metal , Nanofibras , Humanos , Plata/farmacología , Antibacterianos/farmacología , BacteriasRESUMEN
PURPOSE: Pirarubicin (THP) is an antitumour drug widely used in clinical practice, but its cardiotoxicity limits its application. THP cardiotoxicity must be treated as soon as possible. There is an urgent need to find drugs that alleviate THP cardiotoxicity. The purpose of this study was to investigate the effects and mechanisms of Astaxanthin (AST) on THP-induced cardiomyocytes. METHODS: Rat cardiomyocytes H9c2 were induced with THP. The effects of AST on THP-induced H9c2 and its mechanism were investigated by CCK8, reactive oxygen species assay, tunnel assay, flow cytometry, RT-qPCR, and Western blot. RESULTS: AST increased cell viability, inhibited apoptosis and accelerated cell cycle progression, reduced oxidative damage and inflammatory response in THP-induced H9c2; down-regulated miR-494-3p expression, promoted MDM4 expression, inhibited p53 activation, and suppressed apoptosis-related protein expression. Overexpression of MiR-494-3p reversed the above effects of AST. CONCLUSIONS: AST can inhibit H9c2 apoptosis induced by THP and attenuate H9c2 damage by THP, which may be achieved by downregulating miR-494-3p, upregulating MDM4, and inhibiting p53.
Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Ratas , Animales , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , MicroARNs/metabolismo , Miocitos Cardíacos , Cardiotoxicidad/prevención & control , ApoptosisRESUMEN
Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. The aim of this study was to investigate the protective effect and mechanism of knockdown of lncRNA Miat in THP-induced cardiotoxicity. The extent of damage to immortalized cardiomyocytes in mice was assessed by CCK8, TUNEL, ROS, Ca2+ , RT-qPCR, and Western blot. The relative levels of Miat in THP-treated cardiomyocytes (HL-1) were measured. The protective effect of Miat on THP-treated HL-1 was assessed. The binding relationship between lncRNA Miat and mmu-miRNA-129-1-3p was verified by a dual luciferase reporter gene assay. The protective role of Miat/miRNA-129-1-3p in THP-induced HL-1 was explored by performing a rescue assay. THP reduced cell viability, induced apoptosis, triggered oxidative stress and calcium overload. Expression of Miat in HL-1 was significantly elevated after THP treatment. Miat knockdown significantly alleviated the cardiotoxicity of THP. MiR-129-1-3p is a direct target of Miat. Knockdown of miR-129-1-3p reversed the protective effect of Miat knockdown on HL-1. Miat knockdown can alleviate THP-induced cardiomyocyte injury by regulating miR-129-1-3p.
Asunto(s)
Cardiotoxicidad , Doxorrubicina , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Apoptosis , Doxorrubicina/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
BACKGROUND: High fasting plasma glucose (HFPG) is the fastest-growing risk factor for cancer deaths worldwide. We reported the cancer mortality attributable to HFPG at global, regional, and national levels over the past three decades and associations with age, period, and birth cohort. METHODS: Data for this study were retrieved from the Global Burden of Disease Study 2019, and we used age-period-cohort modelling to estimate age, cohort and period effects, as well as net drift (overall annual percentage change) and local drift (annual percentage change in each age group). RESULTS: Over the past 30 years, the global age-standardized mortality rate (ASMR) attributable to HFPG has increased by 27.8%. The ASMR in 2019 was highest in the male population in high sociodemographic index (SDI) areas (8.70; 95% CI, 2.23-18.04). The net drift for mortality was highest in the female population in low SDI areas (2.33; 95% CI, 2.12-2.55). Unfavourable period and cohort effects were found across all SDI quintiles. Cancer subtypes such as "trachea, bronchus, and lung cancers", "colon and rectal cancers", "breast cancer" and "pancreatic cancer" exhibited similar trends. CONCLUSIONS: The cancer mortality attributable to HFPG has surged during the past three decades. Unfavourable age-period-cohort effects on mortality were observed across all SDI quintiles, and the cancer mortality attributable to HFPG is expected to continue to increase rapidly in the future, particularly in lower SDI locations. This is a grim global public health issue that requires immediate attention.
Asunto(s)
Glucemia , Neoplasias , Humanos , Masculino , Femenino , Años de Vida Ajustados por Calidad de Vida , Carga Global de Enfermedades , Factores de Riesgo , Salud Global , Ayuno , Estudios de CohortesRESUMEN
OBJECTIVE: Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. There is an urgent need to find drugs to alleviate the cardiotoxicity of THP. This study aimed to investigate the effect and mechanism of miR-494-3p on THP-induced cardiomyocytes. METHODS: THP induced immortalized mouse cardiomyocytes HL-1, silenced or overexpressed miR-494-3p. The effects of miR-494-3p on HL-1 contained in THP were investigated by CCK8, flow cytometry, ROS detection, JC-1 mitochondrial membrane potential detection, TUNEL cell apoptosis detection, RT-qPCR, and Western blot. RESULTS: miR-494-3p could reduce cell viability, increase oxidative damage, and promote cell apoptosis; at the same time, it inhibited the expression of MDM4, promoted the activation of p53, and promoted the expression of apoptosis-related proteins. MiR-494-3p inhibitors have the opposite effect. CONCLUSION: miR-494-3p can aggravate THP damage to HL-1, which may be achieved by downregulating MDM4 and promoting p53. miR-494-3p is one of the important miRNAs in THP-induced cardiotoxicity, which provides theoretical support for its possible use as a therapeutic target for THP-induced cardiovascular disease.
Asunto(s)
MicroARNs , Transducción de Señal , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Miocitos Cardíacos , Cardiotoxicidad/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ApoptosisRESUMEN
Circular RNAs (circRNAs) have been found to be involved in cancer progression and chemotherapy sensitivity. However, the biological function of circRNAs in triple-negative breast cancer (TNBC) and its effect on the sensitivity to pirarubicin (THP) chemotherapy are still unclear. CircEGFR (hsa_circ_0080220) was screened and verified by bioinformatics analysis, proving it was highly expressed in TNBC cell lines, patient tissues, and plasma exosomes, and was associated with poor prognosis of patients. The expression level of circEGFR in patient tissue has potential diagnostic value to distinguish TNBC tissue from normal breast tissue. In vitro studies confirmed that overexpression of circEGFR promoted the proliferation, migration, invasion, and EMT of TNBC cells and decreased the sensitivity of THP treatment while silencing circEGFR showed the opposite effect. The circEGFR/miR-1299/EGFR pathway was cascaded and verified. CircEGFR regulated malignant progression of TNBC by regulating EGFR via sponging miR-1299. THP can inhibit the malignant phenotype of MDA-MB-231 cells by downregulating the expression of circEGFR. In vivo studies confirmed that overexpression of circEGFR can promote tumor growth and EMT and reduce tumor sensitivity to THP treatment. Silencing circEGFR inhibited the malignant progression of the tumor. These results revealed circEGFR is a promising biomarker for TNBC diagnosis, therapeutic and prognosis.
Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , ARN Circular/genética , Proliferación Celular/genética , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genéticaRESUMEN
The purpose of this study was to determine whether FABP1 and FAS regulate expression of collagen and its crosslinking via lysyl oxidase in isolated adipocytes from Zongdihua pigs. We aimed to identify biochemical processes affecting meat quality using molecular tools to provide a basis for breeding improvement of these animals. We measured expression levels of FABP1 and related genes using qRT-PCR in longissimus dorsi muscle and subcutaneous adipose tissues. Primary adipocytes from fat tissues were isolated and FABP1 and FAS were over-expressed from recombinant plasmids. Sequence analysis of the cloned genes indicated that FABP1 encodes a hydrophobic protein of 128 amino acids and contained 12 predicted phosphorylation sites and no transmembrane regions. The basal levels of FABP1 and FAS expression in pig tissues were 3-3.5-fold higher in subcutaneous fat compared with muscle (P < 0.01). Recombinant expression plasmids were successfully transfected into the cloned preadipocytes and (a) over-expression of FAS resulted in significantly increased expression of COL3A1 (P < 0.05) and significantly inhibited lysyl oxidase LOX expression (P < 0.01); (b) over-expression of FABP1 significantly increased COL3A1 expression (P < 0.01) and significantly inhibited LOX expression (P< 0.05) and significantly reduced lysyl oxidase activity (P < 0.01). Therefore, FAS enhanced FABP1 expression resulting in increased collagen accumulation and this preliminarily suggested that FAS and FABP1 can serve as fat-related candidate genes and provide a theoretical basis for the study of fat deposition in Zongdihua pigs.
Asunto(s)
Ácidos Grasos , Proteína-Lisina 6-Oxidasa , Porcinos , Animales , Ácidos Grasos/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Adipocitos/metabolismo , Colágeno/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ácido Graso Sintasas/metabolismoRESUMEN
OBJECTIVE: This study aimed to explore the clinical significance of fatty acid transport-related protein (FATRP) in patients with clear cell renal cell carcinoma(ccRCC). METHODS: RNA-seq data and corresponding clinical data of ccRCC were obtained from TCGA data portal. Seventeen key FATRP genes were comprehensively investigated using bioinformatics approaches to systematically investigate their expression patterns in ccRCC. In addition, the correlation between the expression levels of these genes and clinicopathological features in ccRCC was further explored. RESULTS: Among the 17 key FATRP genes, only FABP5, FABP6, and FABP7 could be regarded as ideal biomarkers for ccRCC, as they were highly expressed in ccRCC tumor tissues, and positively correlates with tumor progression and poor prognosis. FABP6 had the highest copy number variations (CNV) events (63.07 %), and ccRCC patients with FABP6 amplification had a better prognosis than the unaltered group. DNA methylation levels of FABP6 and FABP7 were downregulated in ccRCC tumor tissues compared to those in normal tissues. FABP5 showed the opposite results. Moreover, a novel four FATRP gene (FABP1, FABP5, FABP7, FATP2) and three clinical parameter (age, stage, and grade) prediction model was constructed and that comprised a significant independent prognostic signature. CONCLUSIONS: Only a few FATRP genes are upregulated in ccRCC tumor tissue, and positively correlate with tumor progression and poor prognosis. The accuracy of a single gene of these FATRP genes as predictors of progression and prognosis of ccRCC is limited. The performance of the novel prediction model proposed by this study was much better than that of any single gene.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Variaciones en el Número de Copia de ADN , Pronóstico , Ácidos Grasos , Proteínas de Unión a Ácidos Grasos/genéticaRESUMEN
Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.
RESUMEN
PURPOSE: Atherosclerosis (AS) is a cardiovascular disease that has become a major threat to public health worldwide. This study aims to elucidate the effect and mechanism of icariin (ICA) in treating atherosclerosis. METHODS: ApoE-/- mouse AS modeling, ELISA, and hematoxylin-eosin staining were conducted to explore whether icariin has a therapeutic effect on AS. The microRNA (miRNA) chips for ICA treatment of ApoE-/- AS mice were developed; in silico analyses were performed, and signaling pathways were identified. Oxidized low-density lipoprotein (Ox-LDL) was used to induce human aortic vascular smooth muscle cells (HAVSMCs) to build an in vitro AS cell model. Moreover, miR-205-5p was silenced. Finally, cell viability was detected by MTT assay, cell apoptosis by flow cytometry and Western blot, and cell migration by the scratch test. RESULTS: ICA could reduce lipid accumulation in the blood vessels of mice and plaque formation to treat AS. ICA promoted apoptosis and inhibited cell migration of HAVSMCs induced by ox-LDL. Moreover, cell proliferation and migration were inhibited via ICA, which was restored by miR-205-5p silencing. CONCLUSION: ICA can alleviate AS and inhibit the proliferation and migration of HAVSMCs induced by ox-LDL, potentially mediated by the upregulation of miR-205-5p.