Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047230

RESUMEN

Dysregulation of cholesterol homeostasis occurs in multiple types of tumors and promotes cancer progression. Investigating the specific processes that induce abnormal cholesterol metabolism could identify therapeutic targets to improve cancer treatment. In this investigation, we observed upregulation of 7-dehydrocholesterol reductase (DHCR7), a vital enzyme involved in the synthesis of cholesterol, within bladder cancer (BC) tissues in comparison to normal tissues, which was correlated with increased BC metastasis. Increased expression of DHCR7 in BC was attributed to decreased mRNA degradation mediated by YTHDF2. Loss or inhibition of DHCR7 reduced BC cell invasion in vitro and metastasis in vivo. Mechanistically, DHCR7 promoted BC metastasis by activating the cAMP/PKA/FAK pathway. Specifically, DHCR7 increased cAMP levels by elevating cholesterol content in lipid rafts, thereby facilitating the transduction of signaling pathways mediated by cAMP receptors. DHCR7 additionally enhanced the cAMP signaling pathway by reducing the concentration of 7-DHC and promoting the transcription of the G protein-coupled receptor GIPR. Overall, these findings demonstrate that DHCR7 plays an important role in BC invasion and metastasis by modulating cholesterol synthesis and cAMP signaling. Furthermore, inhibition of DHCR7 shows promise as a viable therapeutic strategy for suppressing BC invasion and metastasis.

2.
J Transl Med ; 22(1): 55, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218866

RESUMEN

Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resistance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and analyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resistance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvironment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were implemented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its inhibitor (TVB-3166) that can reverse this resistance effect.


Asunto(s)
Gemcitabina , Neoplasias de la Vejiga Urinaria , Humanos , Reprogramación Metabólica , Secuencia de Bases , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Análisis de Secuencia de ARN , Microambiente Tumoral , Acido Graso Sintasa Tipo I/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...