Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Res Sq ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38978592

RESUMEN

The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. Here, we performed a plasma lipidomic analysis on male and female subjects who underwent heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2% inclination at a controlled temperature of 40°C. We identified 995 lipids from 27 classes, with nearly half of all detected lipids being responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). We additionally examined correlations between changes in plasma lipids by using the physiological strain index (PSI). Here, even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI is related to metabolic efficiency versus physical exertion. Overall, our results show that HTT has a strong impact on the plasma lipidome and that metabolic inefficiencies may underlie heat intolerance.

2.
Mater Horiz ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022827

RESUMEN

The development of wearable electronics has driven the need for smart fibers with advanced multifunctional synergy. In this paper, we present a design of a multifunctional coaxial fiber that is composed of a biopolymer-derived core and an MXene/silver nanowire (AgNW) sheath by wet spinning. The fiber synergistically integrates moisture actuation, length tracing, humidity sensing, and electric heating, making it highly promising for portable devices and protective systems. The biopolymer-derived core provides deformation for moisture-sensitive actuation, while the MXene/AgNW sheath with good conductivity enables the fiber to perform electric heating, humidity sensing, and self-sensing actuation. The coaxial fiber can be programmed to rapidly desorb water molecules to shrink to its original length by using the MXene/AgNW sheath as an electrical heater. We demonstrate proof-of-concept applications based on the multifunctional fibers for thermal physiotherapy and wound healing/monitoring. The sodium alginate@MXene-based coaxial fiber presents a promising solution for the next-generation of smart wearable electronics.

3.
Nano Lett ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012768

RESUMEN

Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.

5.
Foods ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38890938

RESUMEN

The classification of Stropharia rugoso-annulata is currently reliant on manual sorting, which may be subject to bias. To improve the sorting efficiency, automated sorting equipment could be used instead. However, sorting naked mushrooms in real time remains a challenging task due to the difficulty of accurately identifying, locating and sorting large quantities of them simultaneously. Models must be deployable on resource-limited devices, making it challenging to achieve both a high accuracy and speed. This paper proposes the APHS-YOLO (YOLOv8n integrated with AKConv, CSPPC and HSFPN modules) model, which is lightweight and efficient, for identifying Stropharia rugoso-annulata of different grades and seasons. This study includes a complete dataset of runners of different grades in spring and autumn. To enhance feature extraction and maintain the recognition accuracy, the new multi-module APHS-YOLO uses HSFPNs (High-Level Screening Feature Pyramid Networks) as a thin-neck structure. It combines an improved lightweight PConv (Partial Convolution)-based convolutional module, CSPPC (Integration of Cross-Stage Partial Networks and Partial Convolution), with the Arbitrary Kernel Convolution (AKConv) module. Additionally, to compensate for the accuracy loss due to lightweighting, APHS-YOLO employs a knowledge refinement technique during training. Compared to the original model, the optimized APHS-YOLO model uses 57.8% less memory and 62.5% fewer computational resources. It has an FPS (frames per second) of over 100 and even achieves 0.1% better accuracy metrics than the original model. These research results provide a valuable reference for the development of automatic sorting equipment for forest farmers.

6.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1275-1282, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886426

RESUMEN

During the snowmelt period, the external erosive forces are dominated by freeze-thaw cycles and snowmelt runoff. These forces may affect soil structure and aggregate stability, thereby influencing snowmelt erosion. The process of snowmelt runoff can lead to the breakdown of aggregates during their transportation. However, few studies examined the effects of freeze-thaw cycles on the breakdown of aggregates during transportation. Focusing on 5-7 and 3-5 mm soil aggregates of typical black soil region in Northeast China, we analyzed the composition of water-stable aggregates, mean weight diameter (MWD), normalized mean weight diameter (NMWD), as well as breakdown rate of soil aggregates (BR) under different freeze-thaw cycles (0, 1, 5, 10, 15 and 20 times) and different transport distances (5, 10, 15, 20, 25 and 30 m). We further investigated the contribution (CT) of both freeze-thaw cycles and transport distances to BR. The results showed that: 1) After freeze-thaw cycles, the 5-7 and 3-5 mm aggregates were mainly composed of particles with a diameter of 0.5-1 mm. With increasing frequency of freeze-thaw cycles, the MWD generally showed a downward trend. Moreover, under the same number of freeze-thaw cycles, the NMWD of 3-5 mm aggregates was higher than that of 5-7 mm aggregates. 2) As the transport distance increased, the BR of 5-7and 3-5 mm aggregates gradually increased. Compared that under control group, the BR under one freeze-thaw cycle increased by 59.7%, 32.2%, 13.7%, 6.2%, 13.4%, 7.5%, and 60.0%, 39.0%, 18.4%, 13.0%, 6.3%, 6.1% at the condition of 5, 10, 15, 20, 25 and 30 m transport distances, respectively. However, with increasing frequency of freeze-thaw cycles, the BR increased slowly. 3) The breakdown of soil aggregates was mainly influenced by the transport distance (CT=54.6%) and freeze-thaw cycles (CT=26.2%). Freeze-thaw cycles primarily altered the stability of soil aggregates, which in turn affected the BR. Therefore, during the snowmelt period, freeze-thaw cycles reduced the stability of soil aggregates, leading to severe breakdown of soil aggregates during snowmelt runoff process. This made the soil more susceptible to migration with snowmelt runoff, which triggered soil erosion. Therefore, more attention should be paid on the prevention of soil erosion during snowmelt period.


Asunto(s)
Congelación , Suelo , Transportes , Suelo/química , China , Erosión del Suelo/prevención & control , Nieve
7.
Front Cardiovasc Med ; 11: 1369642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716483

RESUMEN

Refractory heart failure (RHF), or end-stage heart failure, has a poor prognosis and high case fatality rate, making it one of the therapeutic difficulties in the cardiovascular field. Despite the continuous abundance of methods and means for treating RHF in modern medicine, it still cannot meet the clinical needs of patients with RHF. How to further reduce the mortality rate and readmission rate of patients with RHF and improve their quality of life is still a difficult point in current research. In China, traditional Chinese medicine (TCM) has been widely used and has accumulated rich experience in the treatment of RHF due to its unique efficacy and safety advantages. Based on this, we comprehensively summarized and analyzed the clinical evidence and mechanism of action of TCM in the treatment of RHF and proposed urgent scientific issues and future research strategies for the treatment of RHF with TCM, to provide reference for the treatment of RHF.

8.
Front Biosci (Landmark Ed) ; 29(5): 170, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812306

RESUMEN

Ischemia-reperfusion injury (IRI) is a complex phenomenon. Although researchers have long been aware of IRI, its complex signaling events and potential therapeutic targets are still an active research area. The role of reactive oxygen species in IRI has garnered great interest among scientists. Recent studies have found that reactive oxygen species produced by IRI can activate redox-sensitive transient receptor potential channels (redox TRPs). The discovery of redox TRPs provides a new perspective for understanding the mechanism of IRI.


Asunto(s)
Oxidación-Reducción , Especies Reactivas de Oxígeno , Daño por Reperfusión , Canales de Potencial de Receptor Transitorio , Daño por Reperfusión/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Transducción de Señal
9.
Adv Mater ; 36(27): e2403403, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631689

RESUMEN

Efficient and robust n-i-p perovskite solar cells necessitate superior organic hole-transport materials with both mechanical and electronic prowess. Deciphering the structure-property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC-ETPA (202 °C) and TPE-ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2-tetraphenylethene (TPE) tetrabromides with triphenylene-ethylenedioxythiophene-dimethoxytriphenylamine (ETPA). In comparison to spiro-OMeTAD, both semiconductors exhibit shallower HOMO energy levels, resulting in increased hole densities (generated by air oxidation doping) and accelerated hole extraction from photoexcited perovskite. Experimental and theoretical studies highlight the more rigid DBC core, enhancing hole mobility due to reduced reorganization energy and lower energy disorder. Importantly, DBC-ETPA possesses a higher cohesive energy density, leading to lower ion diffusion coefficients and higher Young's moduli. Leveraging these attributes, DBC-ETPA is employed as the primary hole-transport layer component, yielding perovskite solar cells with an average efficiency of 24.5%, surpassing spiro-OMeTAD reference cells (24.0%). Furthermore, DBC-ETPA-based cells exhibit superior operational stability and 85 °C thermal storage stability.

10.
Infect Dis Poverty ; 13(1): 28, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610035

RESUMEN

BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.


Asunto(s)
Salud Única , Animales , Asia , Creación de Capacidad , Políticas , Zoonosis/prevención & control
11.
Analyst ; 149(10): 2996-3007, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602375

RESUMEN

Electrical insulators used in transmission lines and outdoor substations are exposed to severe environmental pollution, which significantly increases the risk of power system failure, especially when the pollution layer is highly humid due to adverse weather conditions. The focus of this paper is to establish an effective method for assessing the moisture content (MC) in pollution layers as it serves as a crucial indicator for evaluating the risk of failure in insulators. Hyperspectral imaging (HSI) technology with a spectral range of 371.08-1037.89 nm was applied to determine significant changes in reflectance spectral characteristics in insulators during dynamic wetting and drying periods. Partial least squares regression (PLSR) models were utilized to evaluate the data presentation enhancement abilities of spectral transformation models and the data dimensionality reduction abilities of characteristic band selection methods. Furthermore, PLSR models were developed to calculate the MC along the pixel dimension to visually retrieve the dynamic wetting and drying processes of the pollution layer. The R-squared and root-mean-square error (RMSE) results in the cross-verification set and prediction set of the RE-RF(70%)-PLSR model with two characteristic bands with a wavelength of 543.28 nm and 848.01 nm were as follows: RCV2 = 0.9824, RMSECV = 0.0367, RP2 = 0.9818, RMSEP = 0.0369, respectively. This research contributes towards the visualization retrieval of the MC and offers an important technique for analyzing flashover evolution, optimizing insulator design, and preparing coating materials for insulators.

12.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38456395

RESUMEN

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Embarazo , Recién Nacido , Femenino , Plastificantes , Meconio/metabolismo , Dietilhexil Ftalato/metabolismo , Dietilhexil Ftalato/toxicidad , Ácidos Ftálicos/metabolismo , Cabello/metabolismo , Organofosfatos , Biotransformación , Ésteres/metabolismo , Exposición a Riesgos Ambientales/análisis
13.
ACS Nano ; 18(13): 9500-9510, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38477715

RESUMEN

Morphing textiles, crafted using electrochemical artificial muscle yarns, boast features such as adaptive structural flexibility, programmable control, low operating voltage, and minimal thermal effect. However, the progression of these textiles is still impeded by the challenges in the continuous production of these yarn muscles and the necessity for proper structure designs that bypass operation in extensive electrolyte environments. Herein, a meters-long sheath-core structured carbon nanotube (CNT)/nylon composite yarn muscle is continuously prepared. The nylon core not only reduces the consumption of CNTs but also amplifies the surface area for interaction between the CNT yarn and the electrolyte, leading to an enhanced effective actuation volume. When driven electrochemically, the CNT@nylon yarn muscle demonstrates a maximum contractile stroke of 26.4%, a maximum contractile rate of 15.8% s-1, and a maximum power density of 0.37 W g-1, surpassing pure CNT yarn muscles by 1.59, 1.82, and 5.5 times, respectively. By knitting the electrochemical CNT@nylon artificial muscle yarns into a soft fabric that serves as both a soft scaffold and an electrolyte container, we achieved a morphing textile is achieved. This textile can perform programmable multiple motion modes in air such as contraction and sectional bending.

14.
Theranostics ; 14(5): 2127-2150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505619

RESUMEN

Rationale: Immune checkpoint inhibitors targeting the programmed cell death (PD)-1/PD-L1 pathway have promise in patients with advanced melanoma. However, drug resistance usually results in limited patient benefits. Recent single-cell RNA sequencing studies have elucidated that MM patients display distinctive transcriptional features of tumor cells, immune cells and interstitial cells, including loss of antigen presentation function of tumor cells, exhaustion of CD8+T and extracellular matrix secreted by fibroblasts to prevents immune infiltration, which leads to a poor response to immune checkpoint inhibitors (ICIs). However, cell subgroups beneficial to anti-tumor immunity and the model developed by them remain to be further identified. Methods: In this clinical study of neoadjuvant therapy with anti-PD-1 in advanced melanoma, tumor tissues were collected before and after treatment for single-nucleus sequencing, and the results were verified using multicolor immunofluorescence staining and public datasets. Results: This study describes four cell subgroups which are closely associated with the effectiveness of anti-PD-1 treatment. It also describes a cell-cell communication network, in which the interaction of the four cell subgroups contributes to anti-tumor immunity. Furthermore, we discuss a newly developed predictive model based on these four subgroups that holds significant potential for assessing the efficacy of anti-PD-1 treatment. Conclusions: These findings elucidate the primary mechanism of anti-PD-1 resistance and offer guidance for clinical drug administration for melanoma.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Antígeno B7-H1 , Microambiente Tumoral
15.
Biomol Biomed ; 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38400838

RESUMEN

Understanding the intricate relationship between prognosis, immune function, and molecular markers in bladder cancer (BC) demands sophisticated analytical methods. To identify novel biomarkers for predicting prognosis and immune function in BC patients, we combined weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression analysis. This was conducted using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Ultimately, we screened the junctional adhesion molecule 3 (JAM3) as an independent risk factor in BC. High levels of JAM3 were linked to adverse clinical parameters, such as higher T and N stages. Additionally, a JAM3-based nomogram model accurately predicted 1-, 3- and 5-year survival rates of BC patients, indicating potential clinical utility. Functional enrichment analysis revealed that high JAM3 expression activated the calcium signaling pathway, the extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway, and was positively correlated with genes associated with epithelial­mesenchymal transition (EMT). Subsequently, we found that overexpression of JAM3 promoted the migration and invasion abilities in BC cells, regulating the expression levels of N-Cadherin, matrix metallopeptidase 2 (MMP2), and Claudin-1 thereby promoting EMT levels. Additionally, we showed that JAM3 was negatively correlated with anti-tumor immune cells such as CD8+T cells, while positively correlated with pro-tumor immune cells such as M2 macrophages, suggesting its involvement in immune cell infiltration. The immune checkpoint CD200 also showed a positive correlation with JAM3. Our findings revealed that elevated JAM3 levels are predictive of poor prognosis and immune cell infiltration in BC patients by regulating the EMT process.

16.
Cell Biol Toxicol ; 40(1): 9, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311675

RESUMEN

Circular RNAs (circRNAs) have been documented to play crucial roles in the biology of various cancers. However, their investigation in melanoma is still at an early stage, particularly as a broader mechanism beyond acting as miRNA sponges needs to be explored. We report here that circFCHO2(hsa_circ_0002490), a circRNA encompassing exons 19 and 20 of the FCHO2 gene, exhibited a consistent overexpression in melanoma tissues. Furthermore, elevated circFCHO2 levels demonstrated a positive correlation with the malignant phenotype and poor prognosis among the 158 melanoma patients studied. Besides, we observed that heightened levels of circFCHO2 promoted melanoma cell proliferation, migration, and invasion in vitro, along with contributing to tumor growth in vivo. Furthermore, we found differences in the secondary structure of circFCHO2 compared to most other circular RNA structures. It has fewer miRNA binding sites, while it has more RNA binding protein binding sites. We therefore speculate that circFCHO2 may have a function of interacting with RNA binding proteins. Mechanistically, it was confirmed by fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), and western blotting assays that circFCHO2 interacts with dead end protein homolog 1 (DND1) and reverses the inhibition of the PI3K/AKT signaling pathway by binding to DND1. Our findings reveal that circFCHO2 drives melanoma progression by regulating the PI3K/AKT signaling pathway through direct binding to DND1 and may serve as a potential diagnostic biomarker and therapeutic target for the treatment of melanoma.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Melanoma , Proteínas de Neoplasias , ARN Circular , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Hibridación Fluorescente in Situ , Melanoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Proteínas de Neoplasias/genética , Proteínas de Unión a Ácidos Grasos/genética
17.
Physiol Rep ; 12(3): e15941, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38325910

RESUMEN

The present study was designed to examine the effect of trans-spinal magnetic stimulation on bilateral respiratory and forelimb muscles in healthy subjects. Two wings of a figure-of-eight magnetic coil were placed on the dorsal vertebrae, from the fifth cervical to the second thoracic dorsal vertebra with a center at the seventh cervical vertebra. The surface electromyograms of bilateral diaphragm and biceps were recorded in response to trans-spinal magnetic stimulation with 20%-100% maximum output of the stimulatory device in male (n = 12) and female participants (n = 8). Trans-spinal magnetic stimulation can induce a co-activation of bilateral diaphragm and biceps when the stimulation intensity is above 60%. The onset latency was comparable between the left and right sides of the muscles, suggesting bilateral muscles could be simultaneously activated by trans-spinal magnetic stimulation. In addition, the intensity-response curve of the biceps was shifted upward compared with that of the diaphragm in males, indicating that the responsiveness of the biceps was greater than that of the diaphragm. This study demonstrated the feasibility of utilizing trans-spinal magnetic stimulation to co-activate the bilateral diaphragm and biceps. We proposed that this stimulatory configuration can be an efficient approach to activate both respiratory and forelimb muscles.


Asunto(s)
Diafragma , Miembro Anterior , Humanos , Animales , Masculino , Femenino , Diafragma/fisiología , Voluntarios Sanos , Electromiografía , Vértebras Torácicas , Fenómenos Magnéticos , Estimulación Eléctrica
19.
Angew Chem Int Ed Engl ; 63(17): e202401604, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38414115

RESUMEN

Formamidinium lead triiodide serves as the optimal light-absorbing layer in single-junction perovskite solar cells. However, achieving operational stability of high-efficiency n-i-p type devices at elevated temperatures remains challenging. In this work, we implemented effective surface modifications on microcrystalline perovskite films. This involved the nucleophilic addition of formamidinium cations and coordination of residual PbI2 with triphenylmethane triisocyanate as well as subsequent polymerization. The in situ growth of a cross-linking network chemically anchored on the perovskite film in this approach effectively reduced trap densities, favorably altered surface work function, suppressing interface charge recombination and thus enhancing cell efficiency. Coupled with a high-melting-point air-doping promoter, we fabricated n-i-p type perovskite solar cells surpassing 25 % efficiency, demonstrating excellent operational stability at 65 °C.

20.
Heliyon ; 10(1): e22742, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192835

RESUMEN

Background: Continuous light exposure increases sympathetic excitation in rats, leading to hypertension, left ventricular hypertrophy, and fibrosis. This study was aimed to investigate whether continuous light exposure causes destabilization of vital signs and gut microbiota (GM) in Sprague Dawley (SD) rats and whether clonidine hydrochloride (CH), a central sympathetic depressant drug, could prevent these changes. Methods: Eight-week-old male SD rats were divided into three groups with different interventions for 14 weeks: control group (CG), 2-mL pure water gavaged daily while on a normal 12-h light/dark cycle; continuous illumination group (CI), 2-mL pure water gavaged daily while receiving continuous exposure to light (300 lx); and drug administration group (DA), CH (10 µg/kg) gavaged daily while receiving continuous exposure to light (300 lx). Results: The results showed that blood pressure, heart rate, and body weight were significantly higher in the CI group than in the CG and DA groups (P < 0.05). Moreover, the Shannon index was higher in the DA group than in the CI group (P = 0.012). The beta diversity index in the CG group was significantly higher in the CI group (P = 0.039). The pairwise comparison results of the linear discriminant analysis effect size showed that Oscillospirales were enriched in the DA group, whereas the Prevotellaceae lineage (family level) > Prevotella (genus level) > Prevotellaceae_bacterium (species level) were enriched in the CI group. The Muribaculaceae family was more abundant in the CG group than in the CI group. Conclusion: Sympathetic nerve inhibition restored the abnormal vital signs and GM changes under continuous light exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...