Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 943: 173831, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866152

RESUMEN

The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.


Asunto(s)
Fertilizantes , Microbiota , Nitrógeno , Microbiología del Suelo , Sorghum , Sorghum/microbiología , Nitrógeno/análisis , Bacterias/clasificación , Hongos/fisiología , Rizosfera , ARN Ribosómico 16S , Raíces de Plantas/microbiología
2.
Environ Int ; 185: 108511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382404

RESUMEN

Fungal plant pathogens threaten crop production and sustainable agricultural development. However, the environmental factors driving their diversity and nationwide biogeographic model remain elusive, impacting our capacity to predict their changes under future climate scenarios. Here, we analyzed potential fungal plant pathogens from 563 samples collected from 57 agricultural fields across China. Over 28.0% of fungal taxa in the phyllosphere were identified as potential plant pathogens, compared to 22.3% in the rhizosphere. Dominant fungal plant pathogen groups were Cladosporium (in the phyllosphere) and Fusarium (in the rhizosphere), with higher diversity observed in the phyllosphere than in rhizosphere soil. Deterministic processes played an important role in shaping the potential fungal plant pathogen community assembly in both habitats. Mean annual precipitation and temperature were the most important factor influencing phyllosphere fungal plant pathogen richness. Significantly negative relationships were found between fungal pathogen diversity and sorghum yield. Notably, compared to the rhizosphere, the phyllosphere fungal plant pathogen diversity played a more crucial role in sorghum yield. Together, our work provides novel insights into the factors governing the spatial patterns of fungal plant pathogens in the crop microbiome, and highlights the potential significance of aboveground phyllosphere fungal plant pathogens in crop productivity.


Asunto(s)
Microbiota , Sorghum , Microbiología del Suelo , Agricultura , Suelo , Grano Comestible
3.
Environ Res ; 239(Pt 1): 117364, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827373

RESUMEN

Comparing with the effect of the average climate change on vegetation phenology, the impacts of extreme climate events remain unclear, especially considering their characteristic cumulative and time-lag effects. Using solar-induced chlorophyll fluorescence (SIF) satellite records, we investigated the cumulative and time-lag effects of drought and heat events on photosynthesis, particularly for the end date of autumn photosynthesis (EOP), in subtropical vegetation in China. Our results showed a negative effect of drought on the delay of EOP, with the cumulative effect on 30.12% (maximum continuous dry days, CDD), 34.82% (dry days, DRD), and 26.14% (dry period, DSDI) of the study area and the general time-lag effect on 50.73% (maximum continuous dry days), 56.61% (dry days), and 47.55% (dry period) of the study area. The cumulative and lagged time were 1-3 months and 2-3 months, respectively. In contrast, the cumulative effect of heat on EOP was observed in 16.27% (warm nights, TN90P), 23.66% (moderate heat days, TX50P), and 19.19% (heavy heat days, TX90P) of the study area, with cumulative time of 1-3 months. The lagged time was 3-4 months, detected in 31.02% (warm nights), 45.86% (moderate heat days), and 36.52% (heavy heat days) of the study area. At the vegetation community level, drought and heat had relatively rapid impacts on EOP in the deciduous broadleaved forest, whereas evergreen forests and bushes responded to heat slowly and took a longer time. Our results revealed that drought and heat have short-term cumulative and time-lag effects on the EOP of subtropical vegetation in China, with varying effects among different vegetation types. These findings provide new insights into the effect of drought and heat on subtropical vegetation and confirm the need to consider these effects in the development of prediction models of autumn phenology for subtropical vegetation.


Asunto(s)
Sequías , Calor , Fotosíntesis , Bosques , Luz Solar , Estaciones del Año , China , Ecosistema , Cambio Climático
4.
Sci Total Environ ; 863: 160986, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36528948

RESUMEN

Soil-borne fungal pathogens pose a major threat to global agricultural production and food security. Pathogen-suppressive bacteria and plant beneficial protists are important components of soil microbiomes and essential to plant health and performance, but it remains largely unknown regarding how agricultural management practices influence the relative importance of protists and bacteria in plant disease suppression. Here, we characterized soil microbiomes (including fungi, protists, and bacteria) in bulk and sorghum rhizosphere soils with various long-term inorganic and organic fertilization regimes, and linked the changes in fungal plant pathogens with the protistan and bacterial communities. We found that the relative abundances of fungal pathogens were significantly decreased by organic fertilization regimes, and there was a significant difference in the community composition of fungal pathogens between inorganic and organic fertilization regimes. Organic fertilization significantly enhanced predatory protists but reduced the proportions of protistan phototrophs. Co-occurrence network analysis revealed more intensive connections between fungal plant pathogens with protists, especially predatory protists, than with bacterial taxa, which was further supported by stronger associations between the community structure of fungal pathogens and predatory protists. We identified more protist consumer taxa than bacterial taxa as predictors of fungal plant pathogens, and structural equation modelling revealed a more important impact of protist consumers than bacteria on fungal pathogens. Altogether, we provide new evidence that the disease inhibitory effects of long-term organic fertilization regimes could be best explained by the potential predation pressure of protists. Our findings advance the mechanistic understanding of the role of predator-prey interactions in controlling fungal diseases, and have implications for novel biocontrol strategies to mitigate the consequences of fungal infections for plant performance.


Asunto(s)
Conducta Predatoria , Suelo , Animales , Suelo/química , Microbiología del Suelo , Eucariontes , Bacterias , Fertilización
5.
J Hazard Mater ; 430: 128442, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35158246

RESUMEN

Understanding the future distribution of antibiotic resistance in natural soil ecosystems is important to forecast their impacts on ecosystem and human health under projected climate change scenarios. Therefore, it is critical and timely to decipher the links between climate warming and antibiotic resistance, two of Earth's most imminent problems. Here, we explored the role of five-year simulated climate warming (+ 4 °C) on the diversity and proportions of soil antibiotic resistance genes (ARGs) across three seasons in both plantation and natural forest ecosystems. We found that the positive effects of warming on the number and proportions of ARGs were dependent on the sampling seasons (summer, autumn and winter), and seasonality was a key factor driving the patterns of ARG compositions in forest soils. Fifteen ARGs, conferring resistance to common antibiotics including aminoglycoside, beta-lactam, macrolide-lincosamide-streptogramin B, multidrug, sulfonamide, and tetracycline, were significantly enriched in the warming treatment. We showed that changes in soil properties and community compositions of bacteria, fungi and protists can explain the changes in soil ARGs under climate warming. Taken together, these findings advance our understanding of environmental ARGs under the context of future climate change and suggest that elevated temperature may promote the abundance of specific soil ARGs, with important implications for ecosystem and human health.


Asunto(s)
Ecosistema , Suelo , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , Microbiología del Suelo
6.
For Ecosyst ; 8(1): 31, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721934

RESUMEN

BACKGROUND: Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. RESULTS: Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. CONCLUSIONS: Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40663-021-00309-9.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...