Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 877, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138216

RESUMEN

High spatio-temporal resolution estimates of electricity consumption are essential for formulating effective energy transition strategies. However, the data availability is limited by complex spatio-temporal heterogeneity and insufficient multi-source feature fusion. To address these issues, this study introduces an innovative downscaling method that combines multi-source data with machine learning and spatial interpolation techniques. The method's accuracy showed significant improvements, with determination coefficients (R2) increasing by 30.1% and 33.4% over the baseline model in two evaluation datasets. With this advanced model, we estimated monthly electricity consumption across 1 km x 1 km grid for 280 Chinese cities from 2012 to 2019. Our dataset is highly consistent with officially released electricity consumption of different industries (Pearson correlation coefficients within 0.83 - 0.91). Moreover, our data can reflect the electricity consumption patterns of different urban land uses compared to other datasets. This study bridges a significant gap in fine-grained electricity consumption data, providing a robust foundation for the development of sustainable energy policies.

2.
Sci Total Environ ; 899: 165498, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442483

RESUMEN

End-of-life vehicles (ELVs) present both opportunities and challenges for the environment and the economy, where effective recycling management plays a decisive role. Recently, the primary focus of recycling management has shifted from simply meeting demand to refining and optimizing processes at the city-scale. However, the mismatch in recycling capacity has become a significant obstacle to maximizing environmental and economic benefits. To reveal this issue and propose improvements in the context of China, this study simulates end-of-life internal combustion engine vehicles (ICEVs) and new energy vehicles (NEVs) at the city-scale from 2021 to 2050, and analyzes their spatio-temporal pattern and recycling capacity matching. The results indicate that the number of ELVs in China will continue to increase, peaking between 3.5 and 3.7 million. This growth will be mainly driven by third- to fifth-tier cities, as well as central and southwestern cities. Regarding recycling capacity matching, most cities possess excess dismantling capacity, while first-tier cities face coordination problems in battery collection. Spatial coordination across cities or provinces is a viable approach for dismantling enterprises and should be prioritized over indiscriminate deregistration or establishing new facilities. The absence of initiative within the recycling system results in uncoordinated battery collection. Implementing a recycling-sharing mechanism and establishing a reuse market can effectively tackle this problem by leveraging market incentives. These analyses provide practical suggestions to maximize the environmental and economic benefits of resource recycling, thereby contributing to the UN's 2030 Sustainable Development Goals (SDGs).

3.
Cities ; 138: 104361, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37162758

RESUMEN

Social distancing policies and other restrictive measures have demonstrated efficacy in curbing the spread of the COVID-19 pandemic. However, these interventions have concurrently led to short- and long-term alterations in social connectedness. Comprehending the transformation in intracity social interactions is imperative for facilitating post-pandemic recovery and development. In this research, we employ social network analysis (SNA) to delve into the nuances of urban resilience. Specifically, we constructed intricate networks utilizing human mobility data to represent the impact of social interactions on the structural attributes of social networks while assessing urban resilience by examining the stability features of social connectedness. Our findings disclose a diverse array of responses to social distancing policies regarding social connectedness and varied social reactions across U.S. Metropolitan Statistical Areas (MSAs). Social networks generally exhibited a shift from dense to sparse configurations during restrictive orders, followed by a transition from sparse to dense arrangements upon relaxation of said orders. Furthermore, we analyzed the alterations in social connectedness as demonstrated by network centrality, which can presumably be attributed to the rigidity of policies and the inherent qualities of the examined MSAs. Our findings contribute valuable scientific insights to support informed decision-making for post-pandemic recovery and development initiatives.

4.
J Phys Chem Lett ; 13(7): 1697-1704, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35156806

RESUMEN

Chiral optical metamaterials have attracted a great deal of attention due to their intriguing properties with respect to fundamental research and practical applications. For metamaterials with achiral structures, the system composed of metamaterials and obliquely incident light has extrinsic chirality and can produce circular dichroism (CD) effect. However, there have been few studies on the azimuth-dependent CD spectra of achiral metamaterials that have greatly improved our understanding of optical phenomena caused by external chirality. In this work, we experimentally studied the azimuth-dependent CD that originated from the extrinsic chirality of the metamaterials in an asymmetric-U shape and a U-bar-shape gold unit structure, separately. We explain the origin of the CD in the coupling of the macro-electric dipole and magnetic dipole, and the simulation results are in good agreement with the experiment. Our results provide a possible way to build an on-chip azimuth sensor based on azimuth-dependent CD spectra of metamaterials.

5.
J Phys Chem Lett ; 9(22): 6656-6661, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30354139

RESUMEN

Phonon-assisted anti-Stokes photoluminescence (ASPL) up-conversion lies at the heart of optical refrigeration in solids. The thermal energy contained in the lattice vibrations is taken away by the emitted anti-Stokes photons' ASPL process, resulting in laser cooling of solids. To date, net laser cooling of solids is limited in rare-earth (RE)-doped crystals, glasses, and direct band gap semiconductors. Searching more solid materials with efficient phonon-assisted photoluminescence up-conversion is important to enrich optical refrigeration research. Here, we demonstrate the phonon-assisted PL up-conversion process from the silicon vacancy (SiV) center in diamond for the first time by studying ASPL spectra for the dependence of temperature, laser power, and excitation energy. Although net cooling has not been observed, our results show that net laser cooling might be eventually achieved in diamond by improving the external quantum efficiency to higher than 95%. Our work provides a promising route to investigate the laser cooling effect in diamond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...